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Abstract—We describe a new side-channel attack. By track-
ing changes in the application’s memory footprint, a concurrent
process belonging to a different user can learn its secrets. Using
Web browsers as the target, we show how an unprivileged, local
attack process—for example, a malicious Android app—can
infer which page the user is browsing, as well as finer-grained
information: whether she is a paid customer, her interests, etc.

This attack is an instance of a broader problem. Many
isolation mechanisms in modern systems reveal accounting in-
formation about program execution, such as memory usage and
CPU scheduling statistics. If temporal changes in this public
information are correlated with the program’s secrets, they
can lead to a privacy breach. To illustrate the pervasiveness of
this problem, we show how to exploit scheduling statistics for
keystroke sniffing in Linux and Android, and how to combine
scheduling statistics with the dynamics of memory usage for
more accurate adversarial inference of browsing behavior.

I. INTRODUCTION

Modern software increasingly leverages OS mechanisms
to improve its security and reliability. For example, every
Android application runs as a separate user, relying on the
OS to ensure that different applications do not affect each
other. Network daemons run as user “nobody” rather than
“root,” using the same mechanism for privilege separation.
The Chrome browser forks a new process for every site in-
stance, relying on the OS process isolation. Other browsers,
including Internet Explorer, are moving to the process-per-
tab model so that crashes in one tab do not affect other tabs.
In this paper, we show that the reliance on OS abstrac-

tions has unintended consequences. It prevents malicious
programs from reading the files or memory of another appli-
cation, but the “accounting” API supported by standard OS
isolation mechanisms can indirectly leak information about
an application to concurrently executing programs—even if
they belong to a different user!
Consider an attacker who gets to execute an unprivileged,

user-level process on the victim’s machine. For example, he
convinces the victim to run a utility or game app on her
Android smartphone—a seemingly safe decision, because
each Android app runs as a separate user. Any Android
app, however, can measure the memory footprint (data+stack
size) or CPU scheduling statistics of another app using the
standard Unix proc facility without any permissions or the
phone owner’s consent. At first glance, this feature appears
harmless: it may reveal that the other app is a memory or
CPU hog, but seems unlikely to leak any secrets.

Our contributions. In the 2000 movie “Memento,” the main
character, suffering from anterograde amnesia, writes out his
memories in small increments using snapshots and tattoos.
When put together, these snippets reveal the answer to a
murder mystery. In this paper, we show that the dynamics
of memory footprints—sequences of snapshots of the pro-
gram’s data resident size (DRS)—are correlated with the
program’s secrets and allow accurate adversarial inference.
This robust side channel can be exploited in any multi-user
environment: for example, by a malicious app on an Android
smartphone or a nosy user on a shared workstation.
We focus on Web browsers as an example of a sophis-

ticated application that keeps important secrets (browsing
behavior). After a brief introduction to memory management
in modern browsers, we explain how differences in content
rendered by the browser manifest in the browser’s DRS, i.e.,
total size of its heap, stack, and mmap-allocated memory, and
how a concurrent attack process can measure the browser’s
DRS even if it belongs to a different user.
We used Chrome, Firefox, and the default Android

browser to render the front pages of Alexa top 100,000 web-
sites and measured the corresponding patterns of changes in
each browser’s DRS. Depending on the browser, between
30% and 50% of these pages are distinguishable: they
produce patterns that are both stable (similar across visits
to the same page) and diverse (dissimilar to visits to other
pages). The attacker can thus pre-compute a database of
browser-specific “signatures” for the distinguishable pages.
We give an algorithm for matching attack measurements

against this database. Stability and diversity ensure that the
matching threshold can be set to produce no false positives:
any successful match to a signature of some distinguishable
page is correct. We also measure the true positive rate (rec-
ognizability), i.e., how often a visit to each distinguishable
page produces a match.
In addition to inferring which pages the victim is brows-

ing, we show how to combine the dynamics of the browser’s
memory usage with secondary side channels to (1) improve
accuracy of inference, and (2) track the state of Web sessions
and infer finer-grained information, including the victim’s
relationship with the site, her interests, etc. Our attack also
works against OP [8] and all WebKit-based browsers, but
we omit the detailed results for space reasons.
Attacks exploiting the dynamics of memory usage are a

symptom of a bigger problem and have implications for all
multi-user systems. Any fine-grained accounting information
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about program execution revealed by the OS, sandbox,
or another containment mechanism is a potential leakage
channel, as long as temporal changes in this information
are (a) correlated with the program’s secrets and (b) can be
observed by the attacker.
To illustrate this thesis, we show how the CPU scheduling

statistics, which are public by default for any process in
Linux and Android, can be exploited for keystroke sniffing
and improving accuracy of the memory-footprint attack.

II. RELATED WORK

Zhang and Wang were the first to observe that the
information revealed by the Unix proc filesystem can be
used for adversarial inference. Their attack exploits the
correlation between the program’s system calls and its ESP
(stack pointer) value for keystroke sniffing [20]. This attack
does not work well against nondeterministic programs, in-
cluding non-trivial GUI applications such as Web browsers.
Our main attack exploits an entirely different side channel
(dynamics of the browser’s memory usage) and infers the
page being browsed by the victim, as well as finer-grained
information, even if they are not associated with keystrokes
(e.g., the user clicks on a link). Unlike ESP, which has no
legitimate uses for other processes, the size of the memory
footprint is used by popular utilities and revealed by most
operating systems even when proc is not available.
Starting from [11], there has been much work on ana-

lyzing encrypted communications, including webpage iden-
tification [6, 16], state of Web applications [5], voice-over-
IP [19], and multimedia streams [13]. Our attack model is
fundamentally different. In contrast to a network attacker
who observes the victim’s network communications, ours is
a local attacker who simply runs an unprivileged process as
a different user on the victim’s machine. This attacker can
observe only very coarse information: the target application’s
memory usage, total number of its context switches, etc. In
Section IV, we explain why webpage fingerprinting based
on object sizes does not work in this setting.
A famous bug in the TENEX operating system for PDP-

10 allowed malicious users to trigger memory-page faults
in the middle of password matching, thus enabling letter-
by-letter password guessing. Side-channel attacks can also
exploit compromising radiation [7, 18], sounds [1], and
reflections [2]. On smartphones, side channels include on-
board sensors [14] and touch-screen motion [3]. Timing
analysis of keystrokes is discussed in [9, 15].

III. OVERVIEW OF THE ATTACK

The basic setting for our attack is two processes executing
in parallel on the same host. The processes belong to
different users. We refer to them as the target process
(victim) and attack process (attacker). The attack process
is unprivileged and does not have root access to the host.

We focus mainly on learning the secrets of Web-browser
processes. For example, the victim is an Android browser,
while the attacker is masquerading as a game or utility while
trying to infer which page the phone owner is browsing,
her relationship with the site (is she a paying customer or
not?), etc. Similarly, on a multi-user workstation (e.g., in a
computer lab on a university campus), a malicious user may
be trying to learn which pages are being browsed by the
concurrent users of the same workstation.

Measuring the target’s memory footprint. The only in-
formation needed for our basic attack is the size of the
target’s memory footprint. By default in Linux and Android,
the drs field in the /proc/<pid>/statm file reveals
data resident size of the process identified by pid, i.e.,
the combined size of its anonymous memory (allocated
via mmap), heap (allocated via brk), and stack. This
value is calculated in the kernel as mm->total_vm -
mm->shared_vm. In FreeBSD, memory footprints can be
measured via kvm_getprocs and via utilities like ps.
In Android, an application can use this method to measure

the memory footprint of another application regardless of
what it lists in its manifest. This requires neither the phone
owner’s consent, nor any permissions beyond what the
application needs for the legitimate side of its operation.
In Windows, the Performance Data Helper (PDH) library

can be used to install a counter for measuring private,
non-shared memory pages of a process [12] (equivalent
to data+heap+code in Linux). GetProcessMemoryInfo
can be used to measure the process’s working set size (pri-
vate+shared pages).1 iOS provides no per-process memory
usage information, but host_statistics shows system-
wide free, resident, wired, active, and inactive pages.
In addition to exploiting memory usage information re-

vealed by proc, in Section VIII we show how to exploit
CPU scheduling statistics. In some systems, proc may also
reveal certain networking information, such as the system-
wide list of IP addresses, but if the host is connected to the
Internet via a proxy, this list contains only the address of
the proxy. As a local, user-level process, the attacker cannot
observe the target’s network traffic.

Building the signature database. The attacker first profiles
the target program and creates attack signatures. They
capture the relationship between the program’s secrets and
the pattern of changes in its memory usage.
To attack browsers, this stage requires large-scale web-

page analysis, repeated for every browser because footprints
are browser-specific. There are sufficiently few popular
browsers that the signature database can be pre-computed
for every major version of every common browser. We did
this for Chrome, Firefox, and the default Android browser.

1http://msdn.microsoft.com/en-us/library/windows/desktop/
ms683219(v=vs.85).aspx
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To build the signature database, the attacker selects w

webpages (w should be as large as feasible) and visits
each page n times. While the browser is loading the page,
the attacker periodically measures the browser’s memory
footprint as described in Section V. The sequence of mea-
surements for each page is converted into a memprint, a
set of (E, c) tuples where E is an integer representing a
particular footprint size, c is how often it was observed
during measurement. Memory usage is reported by the OS at
page granularity, thus each footprint value E is the number
of memory pages used by the process.
For example, this is the partial memprint of

google.com when loaded by Chrome:

(2681,1) (2947,2) (2948,1) (3203,2)
...............

(17168,1) (17172,1) (17204,1) (17210,1)

On the left side of these tuples are drs values read from
the 6th field of /proc/<pid>/statm. They represent
Chrome’s data resident size (DRS) measured in memory
pages. The values on the right are how many times this DRS
was observed while Chrome was loading the webpage.
The number of tuples in a memprint depends on both the

webpage and the browser. Table I shows the distribution of
memprint sizes for the front pages of popular websites.

Table I
MEMPRINT SIZES FOR THE FRONT PAGES OF ALEXA TOP 1,000 SITES.

Browser
Memprint size

Min Max Avg
Chrome 13 536 80
Firefox 81 1117 247
Android 6 343 79

Given two memprints m1 and m2, m1∩m2 and m1∪m2

are computed in the standard way:

((E, c1) ∈ m1) ∧ ((E, c2) ∈ m2) ⇒ (E,min(c1, c2)) ∈ m1 ∩m2

((E, c1) ∈ m1) ∧ ((E, c2) ∈ m2) ⇒ (E,max(c1, c2)) ∈ m1 ∪m2

We compute similarity between two memprints using the
Jaccard index: J(m1,m2) =

|m1∩m2|
|m1∪m2|

. The higher the index,
the more similar the memprints.
Different visits to the same page may produce different

memprints due to the nondeterminism of the browser’s
memory allocation behavior even when rendering the same
content (see Section IV). The attacker may store all n

memprints in his database as the “signature” associated with
the page. This requires O(mnw) storage, where m is the
size of a single memprint (see Table I). An alternative is to
cluster the memprints and use the set of cluster centers as
the signature. For simplicity, we used the former method in
the experiments presented in this paper.
Some pages produce highly variable memory allocations

in the browser due to content variation between visits (see

Section IV). They are removed from the database, leaving
only the pages for which a significant fraction of the repeated
visits produce similar memprints. The similarity threshold is
a parameter of the system; it controls the tradeoff between
false negatives and false positives (see Section VI).

Performing the attack. The attack process runs concur-
rently with the browser process and periodically measures
the latter’s memory footprint as described above. Different
browser versions have different base footprints, enabling
the attacker to infer which signature database to use. The
attacker can download the database or send attack memprints
to a remote server for offline or online matching.
We use the term attack memprint to refer to the at-

tacker’s measurements of the browser’s memory footprint
as the browser loads some webpage. The attack memprint is
matched against the signature database using Algorithm 1.

Algorithm 1 Main steps of the matching algorithm
Input: Signature database D, attack memprint sm
Output: Matched page or no match

for each page p in D do
for each signature sigp for page p in D do

if J(sm, sigp) > threshold then
Return matched page p

end if
end for

end for
Return no match

In Section VI, we show how to tune the parameters of
the algorithm so that it produces at most one match, with no
false positives. A successful match thus reveals which page
the victim is browsing. In Section VII, we extend the attack
to infer finer-grained information by exploiting the semantics
of pages within the site and secondary side channels.

IV. MEMORY MANAGEMENT IN MODERN BROWSERS

To explain why the attack of Section III can use temporal
changes in the size of the browser’s memory footprint
to infer which webpage is being loaded, we give a brief
overview of memory management in modern browsers.
The same principles apply to other applications, too. The
discussion below is Linux-centric, but memory allocators in
other operating systems use similar techniques.

Memory allocation in browsers. Fig. 1 shows an overview
of browser memory management. With a few exceptions
(e.g., Lobo browser implemented in Java), browsers are
implemented in languages from the C family and thus
responsible for their own memory management. Most mem-
ory allocations within the browser are caused by loading
and rendering Web content: running the JavaScript engine,
storing DOM trees, rendering large images, etc.
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Different browsers use different allocators. For example,
the main Firefox and Chrome processes use jemalloc and
tcmalloc, respectively. Dynamically and statically linked
libraries often have their own allocators. Libraries linked to
Firefox allocate memory in 22 different ways.2

In Linux, memory is requested from and returned to the
OS using either brk, or mmap/munmap. brk increases or
decreases contiguous heap space by the requested amount; if
the top of the heap is being used by the program, free space
below cannot be returned to the OS. mmap can allocate non-
contiguous space at page granularity and, unlike brk, freed
pages can be returned to the OS. On some systems, mmap
is significantly slower than brk. Memory usage reported by
the OS is rounded up to page size (4KB in Linux).
Most allocators try to minimize the overhead of system

calls and do not call the OS on every malloc and free.
Instead, they use mmap or brk to obtain a chunk of memory
from the OS and manage it internally, allocating and freeing
smaller blocks in response to the program’s requests.
The allocator maintains a list of free blocks, which can

be of different fixed sizes (bins) to minimize fragmentation
when the program’s allocation request does not match the
size of an available block exactly. When the program frees
memory, it may be added to the list and not returned
immediately to the OS. This has several consequences. First,
a process’s memory footprint from the OS’s viewpoint is
always an overestimate of its actual memory usage. Second,
small allocations do not result in changes in data resident
size and thus remain invisible to the attacker.
Whether a particular malloc call made by the program

results in a mmap or brk call to the OS depends on the
allocator. For example, by default the malloc implemen-
tation in glibc uses mmap for allocations greater than 128
KB. This allocator is employed by the Qt user-interface
library, which is used in the OP browser. Most allocation
requests made by the user-interface component of OP are
below the threshold and thus managed internally by the
allocator, resulting in no visible changes in the observable

2http://blog.mozilla.com/nnethercote/2011/01/07/
memory-profiling-firefox-with-massif-part-2/

Figure 1. Overview of browser memory management and memory usage
reporting.

footprint. (This does not affect the efficacy of our attack
against OP because we target the rendering process, not the
UI.) Another factor is the amount of fragmentation in the
allocator’s internally managed memory. It depends on the
allocation sequence, as well as mmap/brk usage.
We use the term sensitivity for the extent to which the

program’s memory allocation behavior “filters through” the
allocator and becomes visible to the OS and—via memory
usage reports—to the attacker. We say that an allocator has
good sensitivity if (1) big differences in the size and order of
objects allocated by the program result in big differences in
the allocator’s mmap/brk behavior, but (2) small differences
in the program’s allocation behavior result in few differ-
ences in the allocator’s mmap/brk behavior. Intuitively, our
attack succeeds if visits to different pages produce different
mmap/brk patterns, but variations between visits to the
same page produce the same pattern.
Figs. 2 through 5 illustrate that (a) the browser’s allocation

requests do not directly translate into OS-visible changes
in the memory footprint, and (b) the pattern of OS-visible
footprints varies between different pages.
Unlike C/C++ allocators, allocators for managed lan-

guages like Java have very low sensitivity. Therefore, the
attack does not work against browsers implemented in Java.
Memory management varies significantly not only be-

tween browsers, but also between major releases of the
same browser, thus attack signatures are only valid for a
particular browser and major version. Fortunately, only a
few browsers are in common use, thus the requirement to
compute multiple signature databases is unlikely to present
a significant obstacle to the attacker.
Justly or unjustly, the size of the memory footprint

is a popular metric for comparing browsers. Therefore,
browser implementors try hard to minimize it. For example,
MemShrink is an active software engineering task force that
works on reducing the footprint of Firefox.3 Most of these
changes improve the efficacy of our attack because they
make OS-visible footprints more sensitive to the browser’s
inputs. For instance, in recent versions of Firefox, as soon as
the browser frees a large image, the allocator immediately
returns memory to the OS. This produces an observable
change in the footprint, benefiting the attacker.

Nondeterminism of allocation behavior. Typically, given
the same sequence of requests, allocators are largely deter-
ministic. Requests made by the browser, however, are not
the same even when rendering the same HTML content be-
cause of threads, event-driven user interfaces, and JavaScript
execution, which is nondeterministic because of garbage col-
lection, just-in-time compilation, etc. Furthermore, repeated
visits to the same page may return different HTML due to
changes in ads and other dynamic content, thus changing

3For example, see http://blog.mozilla.com/nnethercote/2011/10/19/
memshrink-progress-weeks-13-18/
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Figure 2. Firefox: Distribution of malloc’d block sizes.
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Figure 3. Firefox: Distribution of malloc’d block sizes.
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Figure 4. Firefox: Distribution of mmap/brk allocation sizes.
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Figure 5. Firefox: Distribution of mmap/brk allocation sizes.

the browser’s allocation and de-allocation patterns.

Fragmentation causes the allocator to issue more frequent
requests to the OS. As a consequence, the pattern of changes
in the OS-visible memory footprint varies even for the same
HTML content. This introduces noise into the attacker’s
measurements and decreases accuracy of the attack. Fortu-
nately, modern allocators aim to minimize fragmentation.

Requirements for a successful attack. Recall from Sec-
tion III that the attack process periodically measures the
target’s OS-visible memory footprint. For the attack to work,
these measurements must be diverse and stable. Diversity
means that the sequences of changes in the monitored
process’s memory usage must vary significantly between
different webpages. Stabilitymeans that these sequences—or
at least a significant fraction of them—must be similar across
repeated visits to the same page.

The key decision is which process to monitor. “Mono-
lithic” browsers like Firefox run as a single process, but
in modern browsers like Chrome or OP, a separate process
is responsible for each piece of the browser’s functionality.
For example, OP has dedicated processes for the browser
kernel, user interface, cookie management, networking, and
database management. For these browsers, the attacker must
choose between monitoring a particular browser component,
with more measurements per process, or multiple compo-
nents, with fewer measurements per process.

In our experiments, we opted for more measurements
per process and monitored only the rendering process. This
process takes HTML content as input, parses it, creates

DOM trees, executes JavaScript, uncompresses images, and
generates raw bitmaps to be displayed via the user interface.
Most of these tasks are memory-intensive and memory usage
of the rendering process satisfies both stability and diversity.

Memory usage of other processes—for example, cookie
manager or HTML5 local storage handler—can provide
secondary channels to improve accuracy of the attack. For
example, a page setting multiple cookies will result in
memory allocations in the cookie manager, differentiating
it from a page that does not set cookies.

Our attack exploits temporal changes in the memory
footprint caused by dynamic allocations from the heap and
mmap’d regions. Data resident size visible to the attacker
also includes stack, but we found in our experiments that
the number of pages allocated for the stack rarely changes.

Comparison with network attacks. It is well-known that
webpages can be fingerprinted using the number and size of
objects on the page [5, 16], provided the attacker has access
to the user’s network packets and can thus directly observe
the sizes of objects on pages requested by the user—even if
the page is encrypted.

Fingerprinting webpages using object sizes does not work
in our setting. There is no 1-to-1 correspondence between
individual objects and memory allocation requests to the OS
(see Figs. 2 and 4). There are many allocation sites in the
browser and its libraries, and the attacker who monitors the
browser’s memory usage observes only the cumulative effect
of multiple allocations corresponding to multiple HTML ob-
jects. This information is significantly more coarse-grained
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than that available to the network attacker.
Allocations caused by executing JavaScript and parsing

DOM trees are not related to the size of HTML objects on
the page. Image decompression results in bigger allocations
during rendering than the size of the image object, big ob-
jects may be written into temporary files piece by piece and
never stored in memory in their entirety, etc. Fragmentation
and the resulting nondeterminism of the allocator’s behavior
introduce further noise into our attacker’s observations.
In Chrome, the attacker can also measure the footprint of

the networking process alone. This does not enable the attack
based on individual object sizes because it processes Web
pages as blocks of bytes, without distinguishing individual
objects. Furthermore, the networking process re-uses buffers
through which it streams data to other processes, thus their
sizes are useless for identifying individual objects.

V. EXPERIMENTAL SETUP

We report experimental results for Chrome, Firefox, and
the default Android browser, but the principles of our attack
are applicable to any browser that exposes its memory usage
to other system users. Android experiments are representa-
tive of the smartphone setting, where a malicious application
may spy on the phone owner’s Web browsing. Chrome
and Firefox experiments are representative of a shared-
workstation setting, where one user may spy on another.
Chrome experiments were performed with a Chrome

13.0.782.220 browser running on an Acer laptop with an
Intel Core Duo 2 GHz processor, 2 GB of memory, and
Linux Ubuntu 10.04 operating system. By default, Chrome
uses the process-per-site-instance model and forks a separate
rendering process for each instance of a site visited by the
user.4 A site is identified by its protocol, domain, and port.
The renderer process is responsible for parsing and executing
JavaScript, building DOM trees, rendering images, etc., and
serves as the target in our experiments.
In addition to the renderer, Chrome also forks one process

per each type of plugins that are needed to display the site
instance correctly. These can be distinguished from the ren-
derer process because they have the “–type=plugin” option
in their command line, as opposed to “–type=renderer”.
Firefox experiments were performed with Firefox 3.6.23

on the same laptop. Unlike Chrome, Firefox is a monolithic
browser: a single process is responsible for most of its
functionality and serves as the target in our experiments.
Firefox plugins run in separate “plugin-container” processes.
Whereas Chrome creates a new process for each instance

of a site, Firefox uses one process for all sites visited for the
user. The attack works against Chrome unconditionally, but
against Firefox it works if the browser is fresh, i.e., it can
identify the first page visited by the user after starting the

4http://www.chromium.org/developers/design-documents/
process-models

browser, but accuracy drops off afterwards. We used fresh
browser instances in the Firefox experiments. In Section VI,
we describe variations of the attack that work even against
a “dirty” Firefox browser.
To perform browsing measurements on a large scale,

Android experiments were done with the default browser
in Android 2.2 Froyo in the x86 simulator running in a
VirtualBox VM. We verified that the results are the same for
3.1 Honeycomb in Google’s ARM simulator, but the latter
simulator is too slow for the scale of our experiments. We
used a native attack process for better accuracy. Android pro-
vides developers with the Native Development Kit (NDK),
thus a malicious process can easily masquerade as a game
or another app that plausibly requires native functionality
for performance reasons. Memory footprints of concurrent
processes can also be measured by applications implemented
in Android SDK, but with a lower measurement rate.
In contrast to desktops, an Android user is much likelier

to open a fresh browser for each site visit. Most Android
devices are charged based on their data usage. Keeping the
browser open increases the amount of data transferred over
the cellular network, thus the user has a monetary incentive
to close the browser after viewing a page.
Furthermore, memory is a scarce resource in most An-

droid devices. Once memory usage grows high, the kernel
starts killing inactive processes, reclaiming their memory,
and storing application state—for example, the URL of the
current page in the browser. When the user switches to the
browser, the kernel starts a fresh browser instance with the
saved URL as the destination. Since the browser app has a
big memory footprint, its chances of getting killed when left
inactive and then started afresh are high.

Automating page visits. Gathering memory signatures of a
large number of pages is significantly more time-consuming
than a simple Web crawl. Most memory allocations in the
browser happen when rendering and executing content, after
it has been fetched. Therefore, it is necessary to wait until
the browser has finished retrieving and displaying the page.
JavaScript- and Flash-heavy pages can take a long time to
load. Many of those located far from our measurement site
took as long as 30-40 seconds to fetch and render fully.
Because load times are extremely variable, we instru-

mented browsers with custom scripts that automatically
close the tab 5 seconds after an on load event. The default
Android browser does not support user scripts. We started
its instances remotely, using Google’s adb tool to execute
the am start -a android.intent.action.view
-d <url> command, and closed the page after 20 seconds.

Measuring browsers’ memory footprints. First, the attack
process finds out the pid of the browser process using ps or
a similar utility. It then reads the /proc/<pid>/statm
file in a loop. Each time it observes a change in data
resident size, it records the new value. Because the initial

148



allocations of most browsers do not depend on the contents
of the webpage, measurements only include values above the
browser-specific threshold: 8MB (2048 memory pages) for
Chrome and 64MB (16348 memory pages) for Firefox.5 For
the Android browser, the attack process records all values.
To read proc faster, the attack process uses the pread

system call which does not change the current offset, allow-
ing repeated reads without rewinding or closing the file. To
conceal its heavy CPU use, the attack process exploits the
well-known flaw in the Linux scheduling algorithm [17].
Fig. 18 shows that this CPU cheat has little effect on
accuracy of the attack. Its only purpose is to hide the attack
process’s activity from other users.
To scale our experiments up to 100,000 webpages, we

used a different measurement method that runs the browser
as a child of the attack process. The attack process uses
ptrace to stop the browser at every system call and
measures drs in /proc/<pid>/statm. This enables up
to 6 concurrent measurement and browser processes on the
same CPU without compromising the measurement rate. For
Firefox, the attack process starts firefox-bin as its child.
For Chrome, it only measures the renderer process and starts
the browser with the “–renderer-cmd-prefix=tracer” option.
Chrome then starts a copy of the tracer as its renderer and the
tracer forks the original renderer as its child. We also used
the “–allow-sandbox-debugging” option to allow ptrace
to monitor the renderer as this is not allowed by default.
In the rest of the paper, we refer to measurements collected
using this method as FixSched measurements.
Obviously, only Attack measurements are available during

the actual attack. The sole purpose of FixSched is to
scale our experiments. Fig. 14 shows that the measurement
method does not significantly affect recognizability. The vast
majority of pages that are recognizable in the FixSched
experiments remain recognizable under the actual attack.

Stability of footprints across different machines. The
memprints used in our attack are based on measurements of
the browser’s data resident size. For a given HTML content,
these values are OS- and browser-specific, but machine-
independent (except for minor variations described in Sec-
tion IV). We used Chrome and Firefox to load cached copies
of 20 random webpages on 10 machines with different
processors (from 2 to 8 cores) and amounts of memory
(from 2 to 16 GB), all running Linux Ubuntu 10.04. The
memprints for each page were identical across machines.
User-installed customizations such as plugins, add-ons,

and extensions run either in the browser’s memory context,
or as separate processes. For example, video players, PDF
readers, Chrome extensions, etc. run as separate processes
and have no effect on the memory usage of browser pro-
cesses monitored by our attack. Firefox toolbars, on the other

5Firefox generally consumes more memory than Chrome. Also, the attack
on Chrome only measures the rendering process.

hand, change the browser’s memory footprint in predictable
ways: typically, each toolbar is associated with a small
number of possible offsets, and each measurement of the
browser’s data resident size is shifted by one of the offsets.
We conjecture that the attacker can compute a database of
offsets for common Firefox extensions and account for their
effect when matching memprints against page signatures.
Extensions that significantly change the content rendered by
the browser for a given page—for example, block scripts or
suppress ads—result in very different memprints and thus
require a separate database of webpage signatures.

VI. EVALUATING THE BASIC ATTACK

We now show that our attack can identify many webpages
as they are being rendered by the browser. We are concerned
about two types of errors. A false negative means that the
attack fails to recognize the page visited by the victim. False
negatives can be caused by pages that significantly change
their content depending on the visitor’s IP address, cookies,
or some other factor that varies between the attacker’s visits
when computing the signature database and the victim’s
visits. In this case, memprints observed during the attack
will not match the pre-computed signatures. A false positive
means that the victim visits pageA, but the attack mistakenly
“recognizes” the resulting memprint as another page B.
First, we show that there exists a subset of distinguishable

webpages. For each such page, browser memprints are
similar across visits to this page, but dissimilar to visits to
any other page (including pages outside the distinguishable
subset). The matching threshold of Algorithm 1 can thus be
set so that any match to the signature of a distinguishable
page is correct and there are no false positives.
Second, we measure the true positive rate for distinguish-

able pages, i.e., how often a visit to each page produces a
memprint that matches that page’s signature.
Third, we measure how accuracy of inference is affected

by the measurement rate and concurrent workload, and
describe variations of the attack.
We say that a memprint m and a webpage signature p

match if their similarity (see Section III) is above a certain
threshold (see Algorithm 1). A match is correct if m was
indeed a visit to p, false otherwise. Distinguishability of a
page is the difference between the (probabilistically) worst
correct match of any memprint to this page’s signature and
the best false match. Positive distinguishability implies low
false positive rate. Recognizability of a page is the true
positive rate, i.e., the percentage of visits to this page whose
memprints are matched correctly.

Measuring distinguishability. In our experiments, we mea-
sure distinguishability with respect to fixed ambiguity sets.
Intuitively, a page is distinguishable if a visit to this page
is unlikely to be confused with a visit to any page from
the ambiguity set. We cannot rule out that a page may be
confused with some page not from the ambiguity set. Our
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reported false positive rates are thus subject to the “closed-
world” assumption (i.e., the victim only visits pages in the
ambiguity set). To ensure that our “closed world” is as big
as possible given the constraints of our experimental setup,
we use the front pages of Alexa top N websites as our
ambiguity sets, regardless of whether they are themselves
distinguishable or not. N varies between 1,000 and 100,000
depending on the experiment.6

For each visit to the page, we compute the similarity of
the resulting memprint to the best-matching signature of that
page. Let μ and σ be the mean and standard deviation of
these values. We also compute the similarity of the page’s
memprint to its nearest neighbor in the ambiguity set. This
neighbor may change from visit to visit: some visits may be
most similar to page F , while other visits are most similar
to page F ′ �= F . Let μfalse and σfalse be the mean and
standard deviation of the nearest-neighbor similarity values.
We define distinguishability as (μ− σ)− (μfalse + σfalse),
i.e., it is the probabilistically worst difference between a
true and false positive. Because absolute distinguishability
varies between pages, we normalize it by dividing by
(Max −Min), where Max is the maximum distinguisha-
bility across all pages and Min is the absolute value of
the smallest distinguishability (the latter is always negative).
Distinguishability is thus a conservative overestimate of the
difference between the memprint of a page and the likeliest
false positive in the ambiguity set (cf. eccentricity [10]).
A page is distinguishable if it has positive distinguisha-

bility. Such a page is very unlikely to be mistaken for its
nearest neighbor. Therefore, when the matching algorithm
recognizes this page, this is unlikely to be a false positive.

Distinguishability of popular webpages. The experiments
in this section employ the Attack and FixSched measure-
ment methods described in Section V. For each experiment,
we used the front pages of websites from the Alexa top site
list as our ambiguity set, and selected a smaller target set
of pages at random from the same list.
To create browser-specific signature databases, we visited

each page from the target set 5 times with every browser and
recorded the resulting memprints. We then visited each page
from the ambiguity set 3 times and computed all pairwise
similarities between the memprints of target pages and those
of ambiguity pages. These values were used to compute
distinguishability of target pages as described above.
Figs. 6 through 8 show that, depending on the browser,

between 30% and 50% of the front pages of Alexa top sites
are distinguishable. Distinguishability is worse for Android
than for desktop browsers due to higher non-determinism.
Distinguishability appears to be higher in Attack experi-
ments (Fig. 8) because they use a smaller ambiguity set.
Since there are fewer potential false positives, the similarity

618% of Alexa top 100,000 websites were unreachable or did not load
in our experiments. These sites were removed from our ambiguity sets.
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Figure 6. Chrome: Distinguishability of 1,000 random pages, 20,000-page
ambiguity set (FixSched measurement). 48% of pages are distinguishable.
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Figure 7. Chrome: Distinguishability of 1,000 random pages, 100,000-page
ambiguity set (FixSched measurement). 43% of sites are distinguishable.
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random pages, 1,000-page ambiguity set (Attack measurement).
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gap between correct matches and the “best” false positive is
higher than in FixSched experiments.
Fig. 9 plots cross-site similarity for 100 random web-

pages. Distinguishable pages are dark along the diagonal
(repeated visits to the page produce similar memprints) and
light elsewhere (they are not similar to other pages).
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Figure 9. Chrome: Cross-page similarity for 100 random webpages (Attack
measurement).

Image-heavy pages often have high distinguishability. For
example, Fig. 10 shows how distinctive the memprints of
visits to perfectgirls.net are (this is a hardcore porn
site - beware!). They cannot be mistaken for the front page
of any other Alexa top-1,000 site.
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Figure 10. Chrome: Similarity between perfectgirls.net and the front pages
of Alexa top 1,000 sites (3 iterations each).

On the other hand, pages based on the same template—for
example, google.com and google.de, or Wordpress
blogs—have low distinguishability. In Section VII, we de-
scribe how other side channels help disambiguate pages
that use the same template. Others reasons for low distin-
guishability are animation, frequently changing advertise-
ments, and dynamic, visitor-specific content variations. For

example, the main bbc.com page has low distinguishability
because embedded ads change on every visit and result in
widely varying memory allocations in the browser.
Lowering the matching threshold of Algorithm 1 increases

the false positive rate and decreases the false negative rate.
Figs. 11 and 12 show, for the distinguishable pages, the
tradeoff between the average recognition rate (percentage
of visits correctly recognized by the attack process) and the
false positive rate. Observe that even if the parameters of the
matching algorithm are tuned to produce no false positives,
recognition rate remains relatively high, demonstrating that
many pages can be reliably recognized by their memprint
without ever mistaking them for another page.
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Figure 11. Chrome and Firefox: Average recognition rate vs. false positive
rate for 1,000 pages, 10 visits each, with a 20,000-page (Chrome) and
10,000-page (Firefox) ambiguity set (FixSched measurement).
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Figure 12. Chrome, Firefox, Android: Average recognition rate vs. false
positive rate for 100 pages, 10 visits each, with a 1,000-page ambiguity set
(Attack measurement).

Measuring recognizability. If a page is distinguishable,
a match is unlikely to be a false positive, but not every
visit to a distinguishable page produces a match. Recall that
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recognizability of a page is the percentage of visits whose
memprints are successfully matched by Algorithm 1 to any
of this page’s signatures.
To measure recognizability, we visit each distinguishable

page 5 or 15 times (in FixSched and Attack experiments,
respectively) and set the threshold of Algorithm 1 equal to
the highest similarity between the signature of any target
page and the memprint of any visit to an ambiguity page.
This ensures that memprints of ambiguity pages do not
match any signatures and thus Algorithm 1 cannot produce
any false positives with respect to the ambiguity set.
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Figure 13. Chrome and Firefox: Recognizability of 1,000 random
distinguishable pages (FixSched measurement). No false positives.

Fig. 13 shows the results for Chrome and Firefox. As
many as 75% of the distinguishable pages have recognizabil-
ity above 20% (i.e., at least 1 out of 5 visits produces a rec-
ognizable memprint). For a quarter of the pages, every visit
produces a recognizable memprint, with no false positives.
Figs. 11 and 12 show that if a non-negligible false positive
rate is acceptable, the recognition rate is much higher.
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Figure 14. Chrome and Firefox: Recognizability of 100 random distin-
guishable pages (Attack and FixSched measurements). No false positives.
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Figure 15. Chrome, Firefox, Android: Recognizability of 100 random
distinguishable pages (Attack measurement). No false positives.

Effect of the measurement method. Fig. 14 shows
FixSched and Attack results for Firefox and Chrome on
the same chart, demonstrating that FixSched experiments
accurately represent recognizability under the actual attack
(we are using FixSched solely for scalability). Not only
are the distributions similar, but the same pages that have
high recognizability under FixSched overwhelmingly have
it under Attack (this is not shown on the chart). Fig. 15
shows Attack results for all three browsers.

Recognizability appears to be higher in Attack experi-
ments because they use a smaller ambiguity set. The smaller
the set, the lower the maximum similarity between any target
page and the “best” false positive from the ambiguity set,
the lower the threshold that must be used by the matching
algorithm to avoid false positives. Therefore, some mem-
prints that match the page signature in Attack experiments
no longer match in FixSched experiments, which use bigger
ambiguity sets and thus higher matching thresholds.
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Figure 16. Chrome: Recognizability of 20 random distinguishable pages,
no significant load vs. PostMark running concurrently (Attack measure-
ment). No false positives.
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Effects of concurrent workload. Other processes running
concurrently with the victim and the attacker do not reduce
the efficacy of the attack. They slow down both the victim’s
memory allocations and the attacker’s measurements, but the
patterns measured by the attacker remain roughly the same.
Fig. 16 shows the results for our attack in the presence

of a concurrent, CPU- and I/O-intensive workload on the
host. In this experiment, the victim and the attacker run in
parallel with a PostMark benchmark, which simulates an
email, network news, and e-commerce client. PostMark is
executing in a loop with 100, 000 file-system transactions
in each iteration, causing 36% CPU load. In this case, the
concurrent workload slows the browser process more than
the attack process, enabling the latter to obtain more mea-
surements. The resulting memprint matches the signature of
the page better than in the absence of the workload.
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Figure 17. Chrome: Recognizability of 20 random distinguishable pages
with different measurement rates (Attack measurement). No false positives.

Effects of the measurement rate. Fig. 17 shows that
even if the attack process decreases the rate at which it
measures the memory footprint of the browser process and
thus produces smaller memprints, recognition rates remain
high for distinguishable pages.
Fig. 18 shows that the Linux CPU cheat does not signifi-

cantly affect accuracy of the attack. Our attack process only
uses this cheat to decrease its reported CPU usage and thus
hide its measurement activity.

Variations of the basic attack. Algorithm 1 has many
variations. For example, matching can ignore total footprint
sizes and only consider the sequence of deltas, or focus on
changes caused by allocating and de-allocating large images.
These variations work well for some pages and browsers.

For example, to process a large image, Firefox allocates a
big buffer, uncompresses the image into this buffer, then
frees the buffer after rendering the image. If the buffer
is bigger than 4MB, de-allocation results in immediately
returning memory to the OS. The corresponding change
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Figure 18. Chrome: Recognizability of 20 random distinguishable pages
with and without CPU cheat (Attack measurement). No false positives.

Table II
FIREFOX: AMOUNT OF MEMORY (>= 4 MB) FREED IMMEDIATELY

AFTER LOADING DIFFERENT WEBPAGES.

Webpage Sequence of de-
allocations (in KB)

playboy.com (adult) 9216, 4096, 14336, 4096
exbii.com (adult) 8196, 8196, 8196, 8196

journaldesfemmes.com 8196, 8196, 8196, 8196,
8196, 10240, 5120

cnn.com 5120

in the drs field of /proc/<pid>/statm is observable
by the attacker. Therefore, the variation of the matching
algorithm that correlates deltas in the footprint with images
tends to do well at recognizing pages with many big, high-
resolution images (see Table II). This category includes the
front pages of many adult sites such as playboy.com.

VII. ADVANCED ATTACKS

In Section VI, we showed how to use the dynamics of
memory usage to recognize pages browsed by the victim.
We now show how to combine them with secondary side
channels to infer more private information. All attacks in
this section work against all tested browsers, but for clarity,
each figure only shows the results for a particular browser.

Inferring the state of Web sessions. Most changes in the
browser’s footprint occur while a page is being loaded and
rendered. The footprint then remains stable until the user
requests a new page. For example, Fig. 19 shows changes
in the footprint as the user enters a search query, views the
results, and clicks on a link. The increments and the size of
the stable footprints vary depending on the page within the
site. These differences can leak sensitive information.
Figs. 20 and 21 show that a successful login into, respec-

tively, Google Health and OkCupid (a dating site) results
in a significant increase in the footprint since profile pages
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Figure 19. Evolution of the Firefox memory footprint during a Google
search session.

Figure 20. Google Health state transitions in Firefox. Changes visible to
the attacker are shown in bold.

tend to use more JavaScript than login pages. The attacker
can thus infer whether the victim is a member of the site.
Paid users of OkCupid do not see ads, while free users see
Flash advertisements. The Flash plugin runs as a separate
process, allowing the attacker to infer whether the victim is
a paid member of the dating site or not.
When the victim views medical records from Google

Health, a new PDF reader process appears. The file name in
its command-line arguments (available via proc on Linux,
but not Android) reveals the victim’s username.
Fig. 22 shows that the attacker can infer the medical con-

dition the victim is interested in by measuring the increase in
the browser’s memory footprint after the victim has clicked
on a link from webmd.com.

Disambiguating similar memprints. Secondary side chan-
nels can help disambiguate pages that otherwise have similar
memprints. For example, google.com and google.de
use the same template, thus their memprints are very similar.
Fig. 23 shows how they can be be distinguished by their
duration if the browser is located in the US.
Once the attack process is running concurrently with the

browser, it can directly observe which shared libraries are
used by the browser. Fig. 24 shows that if the matching
algorithm considers changes in the size of shared memory
in addition to changes in the main footprint (DRS), the

Figure 21. OkCupid state transitions in Firefox. Changes visible to the
attacker are shown in bold.
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Figure 22. Chrome footprint increments for transitions from the
webmd.com main page to different illness-related pages.

recognition rate improves for moderately stable pages.
Other useful side channels include timing of DNS reso-

lutions (they reveal whether a particular domain is in the
DNS cache), command-line arguments of various processes,
etc. In section VIII, we show how to use CPU scheduling
statistics—conveniently revealed by proc—to disambiguate
pages with similar memprints.

VIII. EXPLOITING CPU SCHEDULING STATISTICS

Zhang and Wang showed that the ESP (stack pointer)
value revealed by proc leaks information about keystroke
timings [20]. Their attack is unlikely to work on Android
because Dalvik-based Android applications—such as the
MMS app we attack below—are highly nondeterministic.
To illustrate our thesis that any accounting information

about a process can leak its secrets, we show how to use
scheduling statistics for keystroke sniffing. Unlike ESP, these
statistics are used by top and thus available in all versions
of Unix. Zhang and Wang mention the possibility that the
number of interrupts can be used for keystroke sniffing
but do not describe a concrete attack. The interrupt count
is global, not process-specific, thus the feasibility of this
attack remains open. Scheduling statistics, on the other hand,
provide a much more robust, process-specific channel.

Linux. In Linux, the number of context switches made by
a process can be found in /proc/<pid>/schedstat,
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Figure 23. Evolution of the Firefox memory footprint when loading
google.com and google.de (US-based browser).
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Figure 24. Chrome: Recognition rate when considering shared memory in
addition to DRS (100 pages, 1,000-page ambiguity set). No false positives.

which has three fields: time spent on the CPU, time spent
waiting, and timeslices run on the CPU. It turns out that
the timeslice counter leaks precise information about the
keystrokes the process is taking as input.
In programs like bash and ssh, user input is much slower

than the program itself. Therefore, they get off the run queue
whenever they wait for a keystroke and only get back once
the user presses a key. Every time the user presses a key,
bash and ssh execute for 1 and 2 timeslices, respectively,
before going back to wait for the next keystroke.
The attacker can thus continuously monitor schedstat

to find out when keys are pressed and calculate precise inter-
keystroke timings. Table III compares these measurements
with an actual keylogger as the first author is typing his
name. These timings can be used to reconstruct the user’s
input using an appropriate natural language model [20], but
we leave this as a topic for future research.

Android. In Android, /proc/<pid>/schedstat is not
available, but the number of voluntary and involuntary

Table III
INTER-KEYSTROKE TIMINGS IN MILLISECONDS: KEYLOGGER VS.

SCHEDSTAT MEASUREMENTS (LINUX).

Timings bash ssh
True Measured True Measured

1 127 128 159 160
2 191 191 111 111
3 88 87 184 184
4 159 161 199 198
5 111 112 119 119

context switches made by a process can be read from
/proc/<pid>/status. While the process waits for a
call to retrieve the user’s keystroke, the kernel removes it
from the run queue. This results in a context switch and
enables the attacker to measure inter-keystroke timings.
We experimented with two Android applications: an MMS

app for sending text and multimedia messages and a bash
shell. For bash, we monitored the shell process’s context-
switch counts in /proc/<pid>/status. Every time the
user presses a key, the count increases by 1. Unlike bash,
the MMS app has an input loop, so the context-switch count
is increasing even while it is waiting for keystrokes. This
is typical of many GUI applications because in Android
devices, a keystroke is usually processed by an input method
editor (IME) before it is passed to the application. In our
case, LIME IME is handling the key-press events, thus the
attack process monitors the number of context switches in
a LIME process named net.toload.main. For every
key press, the LIME process typically makes 3− 5 context
switches, but as Fig. 25 shows, the intermediate context-
switch delays are very small compared to the delay caused
by waiting for keystroke inputs because user input is much
slower than computation. Table IV shows that this enables
the attacker to precisely measure inter-keystroke timings.
This attack is not specific to the MMS app. All keystrokes

handled by the LIME process are potentially vulnerable.

Table IV
INTER-KEYSTROKE TIMINGS IN MILLISECONDS: KEYLOGGER VS.

STATUS MEASUREMENTS (ANDROID).

Timings MMS app bash
True Measured True Measured

1 445 449 256 256
2 399 399 320 320
3 176 176 165 175
4 236 240 393 391
5 175 173 255 256

Combining side channels. We now show how keystroke
information inferred from the CPU scheduling statistics can
enhance our basic attack based on memory usage dynamics.
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Figure 25. Context-switch delays (LIME in Android).

Consider two sites whose front pages have relatively
similar memprints: rediff.com (an Indian Web portal)
and plentyoffish.com (a popular dating site). Their
URLs require a different number of keystrokes (Table V),
enabling the attack process to disambiguate them if the user
types the URL directly into the Android browser.

Table V
INTER-KEYSTROKE TIMINGS IN MILLISECONDS: KEYLOGGER VS.

STATUS MEASUREMENTS (ANDROID BROWSER).

Timings rediff plentyoffish
True Measured True Measured

1 386 393 400 400
2 405 400 690 689
3 325 327 768 768
4 315 313 943 943
5 329 331 803 803
6 220 220
7 298 294
8 518 519
9 88 89
10 927 927
11 199 201

IX. DEFENSES

Changing the OS. Attacks described in this paper are not
specific to proc. Most operating systems reveal fine-grained
accounting statistics about program execution. As long as
temporal changes in these statistics are correlated with the
program’s secrets, they can be used to infer the latter.
Even the blunt solution of removing the proc filesys-

tem entirely may not eliminate this class of attacks. For
example, proc is deprecated in FreeBSD, but memory
usage information is still available via utilities like ps
and top. An unprivileged attack process can run them
directly or use the same mechanism they use (e.g., call

kvm_getprocs) to measure memory usage of other users’
processes. For example, the attacker can execute ps -l -p
<pid>, which returns virtual set size (VSZ), equal to DRS
+ shared + code size. Code size is typically constant, thus
this immediately leaks the information needed for the attack.
Furthermore, changes to the proc filesystem may break

existing applications. Out of 30 applications from the An-
droid standard installation, 24 do not access proc, while
6 use /proc/self/cmdline to obtain their command-
line parameters. Therefore, removing memory usage in-
formation from proc on Android is unlikely to affect
existing applications. If OS designers cooperate, this may be
feasible defense—at the cost of breaking existing utilities.
Information about the program’s memory usage will still be
available through indirect channels, such as the size of swap
files, but these channels are more coarse-grained and likely
to reduce the efficacy of the attack.
Some kernel-hardening patches7 remove the ability to

view processes outside of chroot even if /proc is
mounted, remove addresses from /proc/pid/stat (this
prevents the attack from [20]), or even restrict proc to show
only the user’s own processes (this breaks existing utilities).
Even if the attack process cannot view information about
other processes via proc, it can still exploit side channels
like the loading time of shared libraries and pid ordering,
as well as aggregate, system-wide information such as total
free memory, total context switches, etc. These channels are
significantly coarser and noisier, but may still be correlated
with the secrets of the target application.

Changing the application. Without changes to the OS, an
application cannot prevent a concurrent attacker from mea-
suring its memory footprint and must modify its behavior
so that its memory usage is not correlated with its secrets.
Network-level defenses, such as browsing through proxies,
Tor, or SSL/TLS, do not provide much protection, nor does
browsing in “private” or “incognito” mode.
To reduce the correlation between the application’s be-

havior and OS-visible changes in its footprint, the allocator
should manage the application’s memory internally, without
exposing allocations and de-allocations to the OS. Imple-
menting programs in managed languages largely solves the
problem. We have not been able to stage our attack against
the Lobo browser implemented in Java.
Modern browser architectures such as Chrome and OP

create a new process for each tab or site instance, allowing
the attacker to easily match his footprint measurements
against the database of pre-computed signatures. As ex-
plained in Section V, mobile operating systems frequently
restart the browser process, which again benefits the attacker.
In contrast, monolithic desktop browsers such as Firefox
reuse the same process for multiple sites. Matching a page
visited in a fresh Firefox is the same as for Chrome, but

7http://grsecurity.net/features.php
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matching subsequently visited pages requires a different
matching algorithm that only looks at footprint deltas (i.e.,
how much it increased or decreased) and ignores the absolute
size. Recognition remains feasible, but its accuracy drops off
because pure-delta sequences are significantly noisier.
In Section VI, we described a variation of the matching

algorithm that considers reductions in the footprint caused
by the browser de-allocating large images after rendering
them and returning the memory to the OS via unmap. This
variation works well even if the Firefox process is “dirty,”
regardless of the previously rendered pages.
Therefore, even returning to monolithic browser architec-

tures where the same rendering process is used for all pages
may not completely foil the attack.

X. CONCLUSION

Many modern systems leverage OS user and process
abstractions for security purposes—for example, to prevent
Android applications from snooping on each other. This has
unintended consequences because the OS reveals certain
accounting information about every process, including the
size of its memory footprint and CPU scheduling statistics.
It has been observed in other contexts [4] that even when a

single piece of information is harmless, how it changes over
time can leak secrets. In this paper, we demonstrated that
the pattern of changes in the browser’s memory footprint
uniquely identifies thousands of webpages, allowing the
attacker (e.g., a malicious Android application or another
user on a shared workstation) to infer which pages the
victim is browsing, her relationship with websites, and
other private information. CPU scheduling statistics can be
used for keystroke sniffing and to improve accuracy of the
memory-footprint attack.
These attacks are a symptom of a bigger problem. Privacy

risks of system isolation mechanisms are poorly understood
and a worthy topic of further research.
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