
iOS 6
Exploitation

280
Days Later

CanSecWest Vancouver

Stefan Esser <stefan.esser@sektioneins.de>

http://www.sektioneins.de

mailto:stefan.esser@sektioneins.de
mailto:stefan.esser@sektioneins.de
http://www.sektioneins.de
http://www.sektioneins.de


Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

Who am I?

Stefan Esser

• from Cologne / Germany

• in information security since 1998

• initially did a lot of low level security

• from 2001 to 2010 focused on PHP / web app security

• since mid-2010 focused on iPhone security (ASLR, kernel exploitation)

• Head of Research and Development at SektionEins GmbH

2



Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

What is this talk about?

• iOS 6 is the new major version of iOS with tons of new security features

• new kernel security mitigations already discussed by Mark Dowd/Tarjei Mandt

• but iOS 6.x has other not yet mentioned new security features

• and some kernel features require commentary

• basically an update to my CSW 2012 talk

• 280 days later because it was about 280 days later when I submitted to Dragos

3



Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

Part I

iOS Security Timeline 2012-2013

4



Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

CanSecWest 2012 - iOS 5 An Exploitation Nightmare?

• reasons why iOS 5 jailbreak took so long

• history of some iOS security features

• history of iOS security bugfixes

• getting kernel debugger running 
on new devices

• abusing BPF as kernel weird machine

5

March 2012

URL: http://cansecwest.com/csw12/
CSW2012_StefanEsser_iOS5_An_Exploitation_Nightmare_FINAL.pdf

http://cansecwest.com/csw12/CSW2012_StefanEsser_iOS5_An_Exploitation_Nightmare_FINAL.pdf
http://cansecwest.com/csw12/CSW2012_StefanEsser_iOS5_An_Exploitation_Nightmare_FINAL.pdf
http://cansecwest.com/csw12/CSW2012_StefanEsser_iOS5_An_Exploitation_Nightmare_FINAL.pdf
http://cansecwest.com/csw12/CSW2012_StefanEsser_iOS5_An_Exploitation_Nightmare_FINAL.pdf
http://livepage.apple.com/
http://livepage.apple.com/


Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

iOS Hacker‘s Handbook

• Charlie Miller - Dionysius Blazakis - Dino Dai Zovi

• Stefan Esser - Vincenzo Iozzo - Ralf-Philipp Weinmann

• covers iOS 4 to iOS 5

• iOS Security Basics, iOS in the Enterprise

• Encryption, Code Signing and Memory Protection

• Sandboxing, Fuzzing iOS Applications

• Exploitation, Return-Oriented-Programming

• Kernel-Debugging and Exploitation, Jailbreaking, Baseband Attacks

6

April 2012

URL: http://ca.wiley.com/WileyCDA/WileyTitle/
productCd-1118204123.html

http://ca.wiley.com/WileyCDA/WileyTitle/productCd-1118204123.html
http://ca.wiley.com/WileyCDA/WileyTitle/productCd-1118204123.html
http://ca.wiley.com/WileyCDA/WileyTitle/productCd-1118204123.html
http://ca.wiley.com/WileyCDA/WileyTitle/productCd-1118204123.html


Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

SyScan 2012 - iOS Kernel Heap Armageddon

• different iOS kernel heap wrappers

• feasibility of cross zone / memory manager 
attacks

• attacking IOKit application data / object 
vtables instead of heap meta data

• using OSUnserializeXML() for generic 
kernel level heap feng shui

• talk updated for BlackHat USA & XCon 2012

7

April 2012

URL 1: http://reverse.put.as/wp-content/uploads/2011/06/
SyScan2012_StefanEsser_iOS_Kernel_Heap_Armageddon.pdf

URL 2: http://media.blackhat.com/bh-us-12/Briefings/Esser/
BH_US_12_Esser_iOS_Kernel_Heap_Armageddon_WP.pdf

http://reverse.put.as/wp-content/uploads/2011/06/SyScan2012_StefanEsser_iOS_Kernel_Heap_Armageddon.pdf
http://reverse.put.as/wp-content/uploads/2011/06/SyScan2012_StefanEsser_iOS_Kernel_Heap_Armageddon.pdf
http://reverse.put.as/wp-content/uploads/2011/06/SyScan2012_StefanEsser_iOS_Kernel_Heap_Armageddon.pdf
http://reverse.put.as/wp-content/uploads/2011/06/SyScan2012_StefanEsser_iOS_Kernel_Heap_Armageddon.pdf
http://media.blackhat.com/bh-us-12/Briefings/Esser/BH_US_12_Esser_iOS_Kernel_Heap_Armageddon_WP.pdf
http://media.blackhat.com/bh-us-12/Briefings/Esser/BH_US_12_Esser_iOS_Kernel_Heap_Armageddon_WP.pdf
http://media.blackhat.com/bh-us-12/Briefings/Esser/BH_US_12_Esser_iOS_Kernel_Heap_Armageddon_WP.pdf
http://media.blackhat.com/bh-us-12/Briefings/Esser/BH_US_12_Esser_iOS_Kernel_Heap_Armageddon_WP.pdf


Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

FinFisher Mobile - The Smartphone Who Loved Me 

• by CitizenLab

• analysis of FinFisher for mobile devices

• samples caught in the wild

• iOS sample compiled for developer phones

• media wrongly assumed developer cert lets 
you write spy applications

8

August 2012

URL: https://citizenlab.org/2012/08/the-smartphone-who-loved-me-
finfisher-goes-mobile/

https://citizenlab.org/2012/08/the-smartphone-who-loved-me-finfisher-goes-mobile/
https://citizenlab.org/2012/08/the-smartphone-who-loved-me-finfisher-goes-mobile/
https://citizenlab.org/2012/08/the-smartphone-who-loved-me-finfisher-goes-mobile/
https://citizenlab.org/2012/08/the-smartphone-who-loved-me-finfisher-goes-mobile/


Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

FinSpy Moile: iOS and Apple UDID Leak

• by Alex Radocea^Crowdstrike

• deep analysis of FinFisher for iOS

• revealed that there was no iOS priv escape 
0-day in FinFisher iOS - just empty placeholder

• instead seems to heavily rely on being jailbroken 
with a public jailbreak prior to installation

9

September 2012

URL: http://www.crowdstrike.com/blog/finspy-mobile-ios-and-apple-
udid-leak/index.html

http://www.crowdstrike.com/blog/finspy-mobile-ios-and-apple-udid-leak/index.html
http://www.crowdstrike.com/blog/finspy-mobile-ios-and-apple-udid-leak/index.html
http://www.crowdstrike.com/blog/finspy-mobile-ios-and-apple-udid-leak/index.html
http://www.crowdstrike.com/blog/finspy-mobile-ios-and-apple-udid-leak/index.html


Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

iOS 6 Released and J/“F“ailbroken on Day 1

• by Musclenerd

• iOS 6 on pre-A5 already tethered jailbroken on day one

• by CHPWN

• iOS 6 on iPhone 5 already failbroken on day one

• failbroken means Cydia runs but no kernel payload

10

September 2012

URL: https://twitter.com/chpwn/status/249249908094296064

https://twitter.com/chpwn/status/249249908094296064
https://twitter.com/chpwn/status/249249908094296064


Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

HITB2012 - iOS 6 Kernel Security

• by Mark Dowd and Tarjei Mandt

• deep analysis of new iOS 6 kernel 
exploit mitigations

• contained a 0-day kernel info leak vulnerability

• and the vm_map_copy exploitation technique
heavily used by latest iOS 6 jailbreak

11

October 2012

URL: http://conference.hackinthebox.org/hitbsecconf2012kul/
materials/D1T2%20-%20Mark%20Dowd%20&%20Tarjei%20Mandt%20-
%20iOS6%20Security.pdf

Video: http://www.youtube.com/watch?v=O-WZinEoki4

http://conference.hackinthebox.org/hitbsecconf2012kul/materials/D1T2%20-%20Mark%20Dowd%20&%20Tarjei%20Mandt%20-%20iOS6%20Security.pdf
http://conference.hackinthebox.org/hitbsecconf2012kul/materials/D1T2%20-%20Mark%20Dowd%20&%20Tarjei%20Mandt%20-%20iOS6%20Security.pdf
http://conference.hackinthebox.org/hitbsecconf2012kul/materials/D1T2%20-%20Mark%20Dowd%20&%20Tarjei%20Mandt%20-%20iOS6%20Security.pdf
http://conference.hackinthebox.org/hitbsecconf2012kul/materials/D1T2%20-%20Mark%20Dowd%20&%20Tarjei%20Mandt%20-%20iOS6%20Security.pdf
http://conference.hackinthebox.org/hitbsecconf2012kul/materials/D1T2%20-%20Mark%20Dowd%20&%20Tarjei%20Mandt%20-%20iOS6%20Security.pdf
http://conference.hackinthebox.org/hitbsecconf2012kul/materials/D1T2%20-%20Mark%20Dowd%20&%20Tarjei%20Mandt%20-%20iOS6%20Security.pdf
http://www.youtube.com/watch?v=O-WZinEoki4
http://www.youtube.com/watch?v=O-WZinEoki4


Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

POC2012 - Find your own iOS kernel bug

• by Xu Hao and Chen Xiaobo

• analysis of previous IOKit vulnerability

• about fuzzing iOKit for vulnerabilities

• later repeated at SyScan360 in December

12

November 2012

URL: http://syscan.org/index.php/download/get/
328bf4b37e6ae8b799472ff230465339/
XuHao_Chen_Xiaobo_Find_your_own_iOS_kernel_bug.zip

http://syscan.org/index.php/download/get/328bf4b37e6ae8b799472ff230465339/XuHao_Chen_Xiaobo_Find_your_own_iOS_kernel_bug.zip
http://syscan.org/index.php/download/get/328bf4b37e6ae8b799472ff230465339/XuHao_Chen_Xiaobo_Find_your_own_iOS_kernel_bug.zip
http://syscan.org/index.php/download/get/328bf4b37e6ae8b799472ff230465339/XuHao_Chen_Xiaobo_Find_your_own_iOS_kernel_bug.zip
http://syscan.org/index.php/download/get/328bf4b37e6ae8b799472ff230465339/XuHao_Chen_Xiaobo_Find_your_own_iOS_kernel_bug.zip
http://syscan.org/index.php/download/get/328bf4b37e6ae8b799472ff230465339/XuHao_Chen_Xiaobo_Find_your_own_iOS_kernel_bug.zip
http://syscan.org/index.php/download/get/328bf4b37e6ae8b799472ff230465339/XuHao_Chen_Xiaobo_Find_your_own_iOS_kernel_bug.zip


Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

Hackulo.us / Installous shutdown

• announcement that Hackulo.us shut down

• also took down Installous the notorious 
application used by iOS application pirates
on jailbroken iPhones

• celebrated by media, jailbreak developers 
and iOS app developers around the world

13

December 2012

URL: http://thanks-god-not-anymo.re

http://thanks-god-not-anymore.com
http://thanks-god-not-anymore.com


Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

kuaiyong, Zeusmos, 25pp, ...

• after installous is dead more and more iOS 
piracy solutions that do not require jailbreak

• solutions reportedly based on account 
sharing and/or some undisclosed exploit

• still active ?!?

14

January 2013

URL 1: http://m.csoonline.com/article/725183/now-pirated-ios-
apps-can-be-installed-without-jailbreak

URL 2: http://no.you.dont.get.the.url.you.want Research Assistant: Marc Rogers

http://m.csoonline.com/article/725183/now-pirated-ios-apps-can-be-installed-without-jailbreak
http://m.csoonline.com/article/725183/now-pirated-ios-apps-can-be-installed-without-jailbreak
http://m.csoonline.com/article/725183/now-pirated-ios-apps-can-be-installed-without-jailbreak
http://m.csoonline.com/article/725183/now-pirated-ios-apps-can-be-installed-without-jailbreak
http://no.you.dont.get.the.url.you
http://no.you.dont.get.the.url.you


Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

Community Milking and iOS 6 JB Release

• by evad3rs

• website with donation button and 
multiple banner ads

• told people repeatedly for about a week
to check website for status updates

• about one week later release of iOS 6.0/6.1 jailbreak

• so far the most expensive jailbreak in terms of crowdfunding

15

February 2013

URL: http://www.evasi0n.com/

http://www.evasi0n.com/
http://www.evasi0n.com/


Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

evasi0n Jailbreak‘s Userland Components

• by Braden Thomas^AccuvantLabs

• analysis of userland components of 
evasi0n jailbreak

• covers most of the userland bugs 
exploited by evasi0n

16

February 2013

URL: http://blog.accuvantlabs.com/blog/bthomas/evasi0n-
jailbreaks-userland-component

http://blog.accuvantlabs.com/blog/bthomas/evasi0n-jailbreaks-userland-component
http://blog.accuvantlabs.com/blog/bthomas/evasi0n-jailbreaks-userland-component
http://blog.accuvantlabs.com/blog/bthomas/evasi0n-jailbreaks-userland-component
http://blog.accuvantlabs.com/blog/bthomas/evasi0n-jailbreaks-userland-component


Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

Dissecting the “evasi0n“ Kernel Exploit

• by Tarjei Mandt^Azimuth

• analysis of kernel components of 
evasi0n jailbreak

• shows how evasi0n is based on techniques discussed 
in the iOS 6 kernel security talk by azimuth

17

February 2013

URL: http://blog.azimuthsecurity.com/2013/02/from-usr-to-svc-
dissecting-evasi0n.html

http://blog.azimuthsecurity.com/2013/02/from-usr-to-svc-dissecting-evasi0n.html
http://blog.azimuthsecurity.com/2013/02/from-usr-to-svc-dissecting-evasi0n.html
http://blog.azimuthsecurity.com/2013/02/from-usr-to-svc-dissecting-evasi0n.html
http://blog.azimuthsecurity.com/2013/02/from-usr-to-svc-dissecting-evasi0n.html


Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

Part II

iOS 6 Kernel Security “Improvements“

18



Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

KASLR

• iOS 6 introduces KASLR - kernel address space layout randomization

• only 256 possible load addresses

• each 2 MB apart

• starting at 0x81200000 ending at 0xA1000000

19



Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

KASLR: But why 2 MB Aligned?

• 2 MB alignment of KASLR seems arbitrary

• why not smaller alignment?

• big alignment is less secure

• right now: 

• leak any address in __DATA and you know the 
kernel‘s base address

(address - 0x200000) & 0xFFE00000

• leak any address from first 2 MB of kernel __TEXT 
and know the kernel‘s base address

address & 0xFFE00000

20



Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

Kernel Address Space Hardening

• kernel __TEXT no longer writable

➡ to stop kernel code hotpatching

• kernel heap no longer executable

➡ to stop just executing kernel data

• kernel address space is separated from user space processes

➡ to stop return into user space code
and offset from NULL-deref attacks

21



Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

Kernel Stack Cookies

• iOS 6 added stack cookies to protect from kernel stack 
buffer overflows

• implementation is rather unusual

• stack cookie on top of stack

• bottom of local stack contains ptr to the value it is 
compared against

• second byte of stack cookie is forced to 0x00

22



Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

Kernel Stack Cookie Verification

23

• stack cookie verification in function epilog

• verification against cookie pointed to

• fact that stack_cookie_ptr and stack_cookie are both on stack is a weakness

• wrong cookie value will lead to a kernel panic without message



Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

Kernel Heap Cookies

• iOS 4 and iOS 5 kernel heap exploitation has always attacked the free list

• in iOS 6 Apple introduced heap protection cookies to protect free list

• distinguishes between small poisoned and larger non-poisoned blocks

• two different security cookies are used for this

➡ stops attacks against the free list as used before in public jailbreaks

24



Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

Kernel Heap Cookies (larger blocks)

• for larger blocks the memory content is kept but end is trashed with cookie

• secret cookie has lowest bit cleared

• if data of freed block leaks this leaks

• a kernel heap address: 0x87b46500

• the secret cookie: 0x6b7769c8 ^ 0x87b46500 = 0xECC30CC8

25

87b46480: 00 65 b4 87 00 00 00 00 00 00 00 00 00 00 00 00 .e..............
87b46490: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
87b464a0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
87b464b0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
87b464c0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
87b464d0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
87b464e0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
87b464f0: 00 00 00 00 00 00 00 00 00 00 00 00 c8 69 77 6b .............iwk

next_pointer

next_pointer^non_poisoned_cookie



Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

Kernel Heap Cookies (small blocks)

• for small blocks the memory content is overwritten with 0xdeadbeef

• secret cookie has lowest bit set

• if data of freed block leaks this leaks

• a kernel heap address: 0x92f1c740

• the secret cookie: 0x7ec1387b ^ 0x92f1c740 = 0xEC30FF3B

26

92f1c700: 40 c7 f1 92 ef be ad de ef be ad de ef be ad de @...............
92f1c710: ef be ad de ef be ad de ef be ad de ef be ad de ................
92f1c720: ef be ad de ef be ad de ef be ad de ef be ad de ................
92f1c730: ef be ad de ef be ad de ef be ad de 7b 38 c1 7e ............{8.~

next_pointer

next_pointer^poisoned_cookie



Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

Kernel Heap Cookies after allocation

• on allocation free list pointer and cookie are overwritten with 0xdeadbeef

• most probably as defense in depth against information leaks

27

9072b000: ef be ad de 00 00 00 ff 00 00 00 ff 00 00 00 ff ................
9072b010: 00 00 00 ff 00 00 00 ff 00 00 00 ff 00 00 00 ff ................
9072b020: 00 00 00 ff 00 00 00 ff 00 00 00 ff 00 00 00 ff ................
9072b030: 00 00 00 ff 00 00 00 ff 00 00 00 ff 00 00 00 ff ................
9072b040: 00 00 00 ff 00 00 00 ff 00 00 00 ff 00 00 00 ff ................
9072b050: 00 00 00 ff 00 00 00 ff 00 00 00 ff 00 00 00 ff ................
9072b060: 00 00 00 ff 00 00 00 ff 00 00 00 ff 00 00 00 ff ................
9072b070: 00 00 00 ff 00 00 00 ff 00 00 00 ff ef be ad de ................



Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

Kernel Heap Hardening

• previously mach_zone_info() and host_zone_info() leaked internal state

• both functions now require debugging kernel boot arguments

• previously OSUnserializeXML() allowed fine control over kernel heap

• Apple fixed some bugs in it and put some arbitrary limits on it

• only exact methods described at BlackHat / SyScan were killed

• other ways to abuse this function for kernel heap feng shui still working

28



Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

Death to Kernel Info Leaks

• two fold strategy to fight kernel info leaks

• fix information leak vulnerabilities

• obfuscate kernel addresses returned to user land

• example of fixed information leaks

• BPF stack data info leak

• kern.proc leak fixed

• kern.file info leak fixed

29



Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

Kernel Address Obfuscation

• lots of kernel API return kernel addresses to user land processes

e.g. mach_port_kobject(), mach_port_space_info(), vm_region_recurse(), 
vm_map_region_recurse(), vm_map_page_info(), proc_info(), fstat(), sysctl()

• protected by adding a random 32 bit cookie (lowest bit set)

30



Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

Kernel Image Address Obfuscation

• some API might even return addresses inside the kernel image

• these addresses are additionally unslid to protect against KASLR leaks

31



Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

Readonly Syscall Table

• previous jailbreaks used partial syscall table overwrites

• Apple moved syscall table into section __DATA::__const

• section is made read only at runtime

• controlled by kernel boot argument dataconstro

• stops syscall table corruption ...

32



Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

Just replace Syscall Table completely?

• kernel linking changes in iOS 6 introduced lots of indirect accesses

• syscall table is no longer accessed directly (also true for lots of other stuff)

• instead pointer to syscall table is used from __nl_symbol_ptr section

• and guess what - this section is writable

33



Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

Part III

iOS 6 Misc Hardening

34



Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

BPF not so weird anymore...

• at CSW 2012 BPF was mentioned as weird machine inside the kernel

• in iOS 6.x it is still a machine but not so weird anymore

• Apple added sanity checks inside the function

• access to slack memory is now checked for bounds

35



Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

mobile_house_arrest - Readonly Code Directory

• lockdown service for reading / writing into app directories

• since iOS 6 application‘s code directory is no longer writable

• previously it was possible to replace arbitrary application resources

36



Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

Part IV

User Space ASLR (Address Space Layout Randomization)

37



Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

ASLR in iOS 4.3-6.x

• randomly slides

• main binary

• dyld (dynamic linker)

• dynamic library cache

38



Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

Position Independent Executables in 2012

• all system binaries were 
compiled as PIE

• most 3rd party apps were 
not compiled as PIE

39

   $ python ipapiescan.py
   Adobe Reader                     -       armv7 - PIE    - N/A
   Bluefire Reader                  - armv6|armv7 - NO_PIE - 3.0
   DiamondDash                      -       armv7 - NO_PIE - 4.2
   Ebook Reader                     - armv6|armv7 - NO_PIE - N/A
   eBookS Reader                    - armv6|armv7 - NO_PIE - N/A
   Facebook                         - armv6|armv7 - NO_PIE - 4.0
   Fly With Me                      - armv6|armv7 - NO_PIE - 3.0
   FPK Reader                       - armv6|armv7 - NO_PIE - 3.2
   Hotels                           - armv6|armv7 - NO_PIE - 3.1
   iBooks                           - armv6|armv7 - NO_PIE - 4.2
   KakaoTalk                        - armv6|armv7 - NO_PIE - 3.1
   Messenger                        - armv6|armv7 - NO_PIE - 4.0
   PerfectReader Mini               - armv6|armv7 - NO_PIE - N/A
   QR Reader                        - armv6|armv7 - NO_PIE - 4.0
   QR Scanner                       - armv6|armv7 - NO_PIE - N/A
   QR-Scanner                       -       armv7 - NO_PIE - 4.0
   QRCode                           - armv6|armv7 - NO_PIE - N/A
   Quick Scan                       - armv6|armv7 - NO_PIE - 4.0
   Skype                            - armv6|armv7 - NO_PIE - N/A
   Twitter                          - armv6|armv7 - NO_PIE - 4.0
   vBookz PDF                       -       armv7 - PIE    - 4.3
   VZ-Netzwerke                     - armv6       - NO_PIE - 3.0
   Wallpapers                       - armv6|armv7 - NO_PIE - 4.1
   WhatsApp                         - armv6|armv7 - NO_PIE - 3.1
   Where is                         - armv6|armv7 - NO_PIE - 4.1

source code of old idapiescan.py is available at Github

https://github.com/stefanesser/idapiescan

https://github.com/stefanesser/idapiescan
https://github.com/stefanesser/idapiescan


Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

iOS 4.3-6.x: NO PIE main binary randomization

• dynamic loader is not slid in iOS 4 for NO PIE main executables

• since iOS 5 the dynamic loader is always slid

• randomized by kernel in 256 positions

40

iOS 4.3 - 4.3.x - NO PIE main executable

iOS 5.0 - 6.x - NO PIE main executable



Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

Position Independent Executables in 2013

• all system binaries are 
compiled as PIE

• most 3rd party apps are 
now compiled as PIE

• NO_PIE mostly 
unimportant apps

• some high profile
exceptions are: Skype, 
SkyDrive, 
Google Translate, ...

41

   $ python ipapiescan.py
   Bluefire Reader           -       armv7(s) - PIE    - 4.3
   Calendar Pro              -       armv7(s) - PIE    - 4.3
   CalenMob                  -       armv7(s) - PIE    - 5.0
   Chrome                    -       armv7    - PIE    - 4.3
   CloudOn                   -       armv7    - NO_PIE - 5.0
   DiamondDash               -       armv7(s) - PIE    - 4.3
   Documents                 -       armv7(s) - PIE    - 4.3
   Ebook Reader              -       armv7    - PIE    - 4.3
   eBookS Reader             - armv6|armv7    - NO_PIE - N/A
   Facebook                  -       armv7    - PIE    - 4.3
   G-Whizz!                  - armv6|armv7    - NO_PIE - 4.0
   Gmail                     -       armv7    - PIE    - 5.0
   Google                    -       armv7    - PIE    - 4.3
   Google Drive              -       armv7    - PIE    - 5.0
   Google Earth              -       armv7    - PIE    - 4.3
   Google+                   -       armv7    - PIE    - 5.0
   iBooks                    -       armv7    - PIE    - 5.0
   IM+                       -       armv7(s) - PIE    - 4.3
   Instagram                 -       armv7    - PIE    - 4.3
   KakaoTalk                 -       armv7(s) - PIE    - 4.3
   Latitude                  - armv6|armv7    - NO_PIE - N/A
   Local                     - armv6|armv7    - PIE    - 4.3
   Lync 2010                 -       armv7    - NO_PIE - 4.3
   Messenger                 -       armv7    - PIE    - 4.3
   MSN World                 -       armv7(s) - PIE    - 4.3
   SkyDrive                  - armv6|armv7    - NO_PIE - 4.0
   Skype                     -       armv7    - NO_PIE - 4.3
   SmartGlass                -       armv7    - PIE    - 5.0
   SSH Mobile Free           -       armv7(s) - PIE    - 4.3
   SystemTools               -       armv7(s) - PIE    - 4.3
   Translate                 - armv6|armv7    - NO_PIE - N/A
   Trillian                  -       armv7    - PIE    - 4.3
   Twitter                   -       armv7    - PIE    - 5.0
   Usessh                    -       armv7(s) - PIE    - 4.3



Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

iOS 4.3-6.0: PIE main binary randomization

• for PIE main executables the main binary and dyld are randomized

• main binary and dyld are slid the same amount

• randomized by kernel in 256 positions

42

iOS 4.3 - 6.0 - PIE main executable



Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

iOS 6.1: PIE main binary randomization

• since iOS 6.1 the kernel finally generates two separate slides

• randomness of both is still limited to 256 positions

• knowing addresses in dyld / main no longer leaks address of other

43

iOS 4.3 - 6.0 - PIE main executable

iOS 6.1 - PIE main executable



Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

iOS 4.3-5.1.1: dyld_shared_cache randomization

• data and code must slide together (due to codesigning)

• hole after code - data usually loaded to 0x3E000000

• max slide determined by difference of end of shared area and end of data

• around 4200 different positions

44

iOS 4.3 - 5.1.1 - maximum slide

iOS 4.3 - 5.1.1 - no slide



Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

iOS 6.x: dyld_shared_cache randomization

• code and data loaded right next to each other

• no more hole - no more wasted space

• max slide determined by size of shared area minus size of shared cache

• about 21500 different positions for iPod 4G 
(new devices = more code = less random)

45

iOS 6.x - no slide

iOS 6.x - maximum slide



Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

Part V

iOS 6 and the Partial Code-signing Vulnerability

46



Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

Partial Code-signing Vulnerability (iOS 4)

• in iOS 4.x jailbreaks the method of choice to launch untether exploits

• when a mach-o is loaded the kernel will load it as is

• a possible signature will be registered

• missing signature is okay until a not signed executable page is accessed

• dyld was tricked with malformed mach-o data structures to execute code

47



Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

sniffLoadCommands (iOS 4.3.4)

• function does pre-handling of mach-o load commands

• iOS 4.3.4 adds protection against partial code signing

• mach-o load commands must be inside a segment

• mach-o load commands can only be in R + X segment

• mach-o load commands may not be partially in a segment

➡ effect is that once dyld maps the header R+X it can only continue to work on it if there is a valid signature

48



Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

Partial Code-signing Vuln (iOS 4.3.4-iOS 5.1.1)

• protection in sniffLoadCommands could be bypassed

• by having a RW- LC_SEGMENT64 for mach-o header

• and a fake R-X LC_SEGMENT for mach-o header

• disclosed at CanSecWest 2012 - here on stage

• worked because kernel handles LC_SEGMENT64 and dyld did not

• magic is that dyld will read mach-o header from from address in memory

49



Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

sniffLoadCommands (iOS 6.0)

• iOS 6.0 adds protection against CSW 2012 trick to sniffLoadCommands

• if a LC_SEGMENT64 load command is found an exception is thrown

➡ CSW 2012 trick was already partially broken after iOS 5.1.1

• in iOS 5.1.1 AMFI verified existence of a code signing blob

50



Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

Load Command Segment Override (iOS 6.0-6.1.2)

• bug used by evasi0n

• kernel not directly involved in loading dynamic libraries only dyld is

• dyld could be tricked with a malicious dylib

• contains real R-X segment with load commands in it

• contains second R-- segment that contains copy of load commands

• virtual address of both segments is set to same position

• later segment in mach-o will replace previous in memory

• when dyld accesses header it is in RO memory = no sig needed = bypass

51



Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

sniffLoadCommands (iOS 6.1.3 beta 2)

• iOS 6.1.3 beta 2 adds additional protections to sniffLoadCommands

• load commands must now be in one segment only

• for dynamic libraries a second sniff pass is added

• all segments must not intersect the R-X segment containing the load 
commands

➡ evasi0n untether killed

52



Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

Part VI

iOS 6.1 and Launch-Daemon-Code-Signing

53



Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

Launch Daemons to launch Untethers

• in iOS 5.x jailbreaks were launched on boot via launch daemons

• launch daemons are plists describing system services

54

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://
www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
    <key>Label</key>
    <string>jb</string>
    <key>ProgramArguments</key>
    <array>
        <string>/usr/sbin/corona</string>
        <string>-f</string>
        <string>racoon-exploit.conf</string>
    </array>
    <key>WorkingDirectory</key>
    <string>/usr/share/corona/</string>
    <key>RunAtLoad</key>
    <true/>
    <key>LaunchOnlyOnce</key>
    <true/>
    <key>DisableAslr</key>
    <true/>
</dict>
</plist>

DisableAslr was removed from iOS 5.1



Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

Launch-Daemon-Code-Signing (I)

55

• abuse of launch daemons lead 
to new iOS 6.1 security feature

• launch daemon loading is now 
code signed

• implemented in /bin/launchctl

• can be bypassed by setting 
kernel boot arguments 
(not possible without low-level exploit)



Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

Launch-Daemon-Code-Signing (II)

56

• without launch-daemon-code-signing
/bin/launchctl scans /System/Library/LaunchDaemons for defined 
launch daemons and loads them

• with activated launch-daemon-code-signing 
a big plist with all defined launch daemons is loaded instead

• launch daemon can only be loaded if it is defined in the plist and exists on disk



Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

Launch-Daemon-Code-Signing (III)

57

• big launch daemon plist is loaded from 
/System/Library/Caches/com.apple.xpcd/xpcd_cache.dylib

• this dynamic library is within the dyld_shared_cache and therefore code signed

• symbol __xpcd_cache must exist

• but binary plist is take from sectiondata of __TEXT::__xpcd_cache



Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

XPCD_CACHE.PLIST

58



Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

Launch-Daemon-Code-Signing Security

59

How secure Apple wanted Launch-Daemon-Code-Signing to be...



Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

Launch-Daemon-Code-Signing Security

60

How secure Launch-Daemon-Code-Signing is right now...



Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

Launch-Daemon-Code-Signing Security

• code signing itself seems to stop loading arbitrary launch daemons

• but Apple forgot / or ignored /etc/launchd.conf

• /etc/launchd.conf defines commands launchctl executes on start

• attacker can execute arbitrary existing commands

61

     
  bsexec .. /sbin/mount -u -o rw,suid,dev /
  setenv DYLD_INSERT_LIBRARIES /private/var/evasi0n/amfi.dylib
  load /System/Library/LaunchDaemons/com.apple.MobileFileIntegrity.plist
  bsexec .. /private/var/evasi0n/evasi0n
  unsetenv DYLD_INSERT_LIBRARIES
  bsexec .. /bin/rm -f /private/var/evasi0n/sock
  bsexec .. /bin/ln -f /var/tmp/launchd/sock /private/var/evasi0n/sock



Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

FAQ: Why not put old launchctl binary on device?

Q: “If only the newest iOS 6.1 launchctl binary 
implements this code signing. Why not put an iOS 6.0 
launchctl binary on the device to bypass this protection?“

A: “System binaries like launchctl do not come with a valid code signing 
signature from Apple. Instead they come only with the table of memory page 
hashes and entitlements. When the kernel loads such a binary it hashes these 
tables and checks if the hash is in a whitelist inside the kernel (a.k.a. trust cache). 
The old launchctl binary will not be accepted because it is not in the trust cache 
of the new kernel.“

62



Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

Final Words

• with iOS 6 Apple has tried to kill all public techniques

• finally kills some stuff that was previously known and ignored for 10 years

• the new mitigations make exploitation a lot harder

• when launch daemon code signing is hardened a bit more,
persisting on iDevices will become incredibly hard

• however there are still weaknesses in most of the protections

• ... and tons of kernel information leaks

63



Stefan Esser  •  iOS 6 - Exploitation 280 Days Later • March 2013  •  

Questions

?
64


