
The Original Elevat0r
History of a private iOS Jailbreak

August, 2017

| © 2017 by ANTID0TE All rights reserved

Who ?

Stefan Esser
• in Information Security since 1998

• “the PHP security guy who migrated to iOS security”

• SektionEins GmbH 2007-2016

• Antid0te UG 2013-now

• Antid0te SG Pte. Ltd. 2017-now

2

Introduction

| © 2017 by ANTID0TE All rights reserved

What is elevat0r? (I)

• in 2011 it all started with a harmless tweet

4

| © 2017 by ANTID0TE All rights reserved

What is elevat0r? (II)

• I was literally complaining about a broken elevator

• but some jokers on Twitter commented on this tweet

• they made people believe that elevat0r was a secret codename

• within minutes jailbreak news sites reported about it

5

| © 2017 by ANTID0TE All rights reserved

What is elevat0r? (III)

• no amount of clarification was able to stop the hype

• so we went along with it and manipulated the JB media

6

| © 2017 by ANTID0TE All rights reserved

What is elevat0r? (IV)

• since that day elevat0r has really become the internal codename for
all my private iOS jailbreaks

• this talk is about the first elevat0r

7

The Vulnerability

| © 2017 by ANTID0TE All rights reserved

The Vulnerability

• the original elevat0r exploits a kernel memory corruption in the
setattrlist() system call

• this system call allows the modification of file attributes

• is / was reachable from most of the sandboxes

9

int setattrlist(const char *path, struct attrlist *alist, void *attributeBuffer,  
 size_t bufferSize, u_long options)

| © 2017 by ANTID0TE All rights reserved

setattrlist()

10

int setattrlist(const char *path, struct attrlist *alist, void *attributeBuffer,  
 size_t bufferSize, u_long options)

struct attrlist {
 u_short bitmapcount; /* number of attr. bit sets in list (should be 5) */
 u_int16_t reserved; /* (to maintain 4-byte alignment) */
 attrgroup_t commonattr; /* common attribute group */
 attrgroup_t volattr; /* Volume attribute group */
 attrgroup_t dirattr; /* directory attribute group */
 attrgroup_t fileattr; /* file attribute group */
 attrgroup_t forkattr; /* fork attribute group */
};

alist bit masks control what attributes to set

| © 2017 by ANTID0TE All rights reserved

setattrlist()

11

int setattrlist(const char *path, struct attrlist *alist, void *attributeBuffer,  
 size_t bufferSize, u_long options)

attributeBuffer contains data for attributes

| © 2017 by ANTID0TE All rights reserved

setattrlist() - attributeBuffer parsing

• attributeBuffer is copied into a buffer on kernel heap

12

if (uap->bufferSize > ATTR_MAX_BUFFER) {
 VFS_DEBUG(ctx, vp, "ATTRLIST - ERROR: buffer size %d too large", uap->bufferSize);
 error = ENOMEM;
 goto out;
}
MALLOC(user_buf, char *, uap->bufferSize, M_TEMP, M_WAITOK); // <----- allocation of buffer
if (user_buf == NULL) {
 VFS_DEBUG(ctx, vp, "ATTRLIST - ERROR: could not allocate %d bytes for buffer", uap->bufferSize);
 error = ENOMEM;
 goto out;
}
if ((error = copyin(uap->attributeBuffer, user_buf, uap->bufferSize)) != 0) { // <---- copying of data
 VFS_DEBUG(ctx, vp, "ATTRLIST - ERROR: buffer copyin failed");
 goto out;
}

| © 2017 by ANTID0TE All rights reserved

setattrlist() - attributeBuffer parsing

• attributeBuffer is parsed step by step

13

/*
 * Unpack the argument buffer.
 */
cursor = user_buf;
bufend = cursor + uap->bufferSize;

/* common */
if (al.commonattr & ATTR_CMN_SCRIPT) {
 ATTR_UNPACK(va.va_encoding);
 VATTR_SET_ACTIVE(&va, va_encoding);
}
if (al.commonattr & ATTR_CMN_CRTIME) {
 ATTR_UNPACK_TIME(va.va_create_time, proc_is64);
 VATTR_SET_ACTIVE(&va, va_create_time);
}
if (al.commonattr & ATTR_CMN_MODTIME) {
 ATTR_UNPACK_TIME(va.va_modify_time, proc_is64);
 VATTR_SET_ACTIVE(&va, va_modify_time);
}

cursor
always points

to current buffer
position

| © 2017 by ANTID0TE All rights reserved

setattrlist() - attributeBuffer parsing

• attributeBuffer is parsed step by step

14

/*
 * Unpack the argument buffer.
 */
cursor = user_buf;
bufend = cursor + uap->bufferSize;

/* common */
if (al.commonattr & ATTR_CMN_SCRIPT) {
 ATTR_UNPACK(va.va_encoding);
 VATTR_SET_ACTIVE(&va, va_encoding);
}
if (al.commonattr & ATTR_CMN_CRTIME) {
 ATTR_UNPACK_TIME(va.va_create_time, proc_is64);
 VATTR_SET_ACTIVE(&va, va_create_time);
}
if (al.commonattr & ATTR_CMN_MODTIME) {
 ATTR_UNPACK_TIME(va.va_modify_time, proc_is64);
 VATTR_SET_ACTIVE(&va, va_modify_time);
}

attributeBuffer contains
only selected attributes

| © 2017 by ANTID0TE All rights reserved

setattrlist() - attributeBuffer parsing

• attributeBuffer is parsed step by step

15

/*
 * Unpack the argument buffer.
 */
cursor = user_buf;
bufend = cursor + uap->bufferSize;

/* common */
if (al.commonattr & ATTR_CMN_SCRIPT) {
 ATTR_UNPACK(va.va_encoding);
 VATTR_SET_ACTIVE(&va, va_encoding);
}
if (al.commonattr & ATTR_CMN_CRTIME) {
 ATTR_UNPACK_TIME(va.va_create_time, proc_is64);
 VATTR_SET_ACTIVE(&va, va_create_time);
}
if (al.commonattr & ATTR_CMN_MODTIME) {
 ATTR_UNPACK_TIME(va.va_modify_time, proc_is64);
 VATTR_SET_ACTIVE(&va, va_modify_time);
}

ATTR_UNPACK*()
read data from cursor

and ensure no out of bounds
access happens

| © 2017 by ANTID0TE All rights reserved

setattrlist() - attributeBuffer parsing

• some attribute data is a bit bigger

• stored somewhere in buffer

• code parses an attreference_t instead

16

typedef struct attrreference {
 int32_t attr_dataoffset;
 u_int32_t attr_length;
} attrreference_t;

relative position
from here to
attribute data

length of
attribute

data

| © 2017 by ANTID0TE All rights reserved

setattrlist() - The Vulnerable Code

• vulnerability in parsing of ATTR_VOL_NAME attribute data

17

/* volume */
if (al.volattr & ATTR_VOL_INFO) {
 if (al.volattr & ATTR_VOL_NAME) {
 volname = cursor;
 ATTR_UNPACK(ar);
 volname += ar.attr_dataoffset;
 if ((volname + ar.attr_length) > bufend) {
 error = EINVAL;
 VFS_DEBUG(ctx, vp, "ATTRLIST - ERROR: volume name too big for caller buffer");
 goto out;
 }
 /* guarantee NUL termination */
 volname[ar.attr_length - 1] = 0;
 }
}

| © 2017 by ANTID0TE All rights reserved

setattrlist() - The Vulnerable Code

• vulnerability in parsing of ATTR_VOL_NAME attribute data

18

/* volume */
if (al.volattr & ATTR_VOL_INFO) {
 if (al.volattr & ATTR_VOL_NAME) {
 volname = cursor;
 ATTR_UNPACK(ar);
 volname += ar.attr_dataoffset;
 if ((volname + ar.attr_length) > bufend) {
 error = EINVAL;
 VFS_DEBUG(ctx, vp, "ATTRLIST - ERROR: volume name too big for caller buffer");
 goto out;
 }
 /* guarantee NUL termination */
 volname[ar.attr_length - 1] = 0;
 }
}

volname
set to current
buffer position

| © 2017 by ANTID0TE All rights reserved

setattrlist() - The Vulnerable Code

• vulnerability in parsing of ATTR_VOL_NAME attribute data

19

/* volume */
if (al.volattr & ATTR_VOL_INFO) {
 if (al.volattr & ATTR_VOL_NAME) {
 volname = cursor;
 ATTR_UNPACK(ar);
 volname += ar.attr_dataoffset;
 if ((volname + ar.attr_length) > bufend) {
 error = EINVAL;
 VFS_DEBUG(ctx, vp, "ATTRLIST - ERROR: volume name too big for caller buffer");
 goto out;
 }
 /* guarantee NUL termination */
 volname[ar.attr_length - 1] = 0;
 }
}

attrreference
is unpacked

| © 2017 by ANTID0TE All rights reserved

setattrlist() - The Vulnerable Code

• vulnerability in parsing of ATTR_VOL_NAME attribute data

20

/* volume */
if (al.volattr & ATTR_VOL_INFO) {
 if (al.volattr & ATTR_VOL_NAME) {
 volname = cursor;
 ATTR_UNPACK(ar);
 volname += ar.attr_dataoffset;
 if ((volname + ar.attr_length) > bufend) {
 error = EINVAL;
 VFS_DEBUG(ctx, vp, "ATTRLIST - ERROR: volume name too big for caller buffer");
 goto out;
 }
 /* guarantee NUL termination */
 volname[ar.attr_length - 1] = 0;
 }
}

volname is
adjusted
to relative

data position

| © 2017 by ANTID0TE All rights reserved

setattrlist() - The Vulnerable Code

• vulnerability in parsing of ATTR_VOL_NAME attribute data

21

/* volume */
if (al.volattr & ATTR_VOL_INFO) {
 if (al.volattr & ATTR_VOL_NAME) {
 volname = cursor;
 ATTR_UNPACK(ar);
 volname += ar.attr_dataoffset;
 if ((volname + ar.attr_length) > bufend) {
 error = EINVAL;
 VFS_DEBUG(ctx, vp, "ATTRLIST - ERROR: volume name too big for caller buffer");
 goto out;
 }
 /* guarantee NUL termination */
 volname[ar.attr_length - 1] = 0;
 }
}

check
against
end of
buffer

| © 2017 by ANTID0TE All rights reserved

setattrlist() - The Vulnerable Code

• vulnerability in parsing of ATTR_VOL_NAME attribute data

22

/* volume */
if (al.volattr & ATTR_VOL_INFO) {
 if (al.volattr & ATTR_VOL_NAME) {
 volname = cursor;
 ATTR_UNPACK(ar);
 volname += ar.attr_dataoffset;
 if ((volname + ar.attr_length) > bufend) {
 error = EINVAL;
 VFS_DEBUG(ctx, vp, "ATTRLIST - ERROR: volume name too big for caller buffer");
 goto out;
 }
 /* guarantee NUL termination */
 volname[ar.attr_length - 1] = 0;
 }
}

zero terminate
volname
inside the

attributeBuffer

| © 2017 by ANTID0TE All rights reserved

setattrlist() - The Vulnerability

• vulnerability in parsing of ATTR_VOL_NAME attribute data

23

/* volume */
if (al.volattr & ATTR_VOL_INFO) {
 if (al.volattr & ATTR_VOL_NAME) {
 volname = cursor;
 ATTR_UNPACK(ar);
 volname += ar.attr_dataoffset;
 if ((volname + ar.attr_length) > bufend) {
 error = EINVAL;
 VFS_DEBUG(ctx, vp, "ATTRLIST - ERROR: volume name too big for caller buffer");
 goto out;
 }
 /* guarantee NUL termination */
 volname[ar.attr_length - 1] = 0;
 }
}

signed integer
can put

volname in front
of buffer

write happens
outside of buffer

| © 2017 by ANTID0TE All rights reserved

setattrlist() - The Vulnerability

24

/* volume */
if (al.volattr & ATTR_VOL_INFO) {
 if (al.volattr & ATTR_VOL_NAME) {
 volname = cursor;
 ATTR_UNPACK(ar);
 volname += ar.attr_dataoffset;
 if ((volname + ar.attr_length) > bufend) {
 error = EINVAL;
 VFS_DEBUG(ctx, vp, "ATTRLIST - ERROR: volume name too big for caller buffer");
 goto out;
 }
 /* guarantee NUL termination */
 volname[ar.attr_length - 1] = 0;
 }
}

signed integer
can put

volname in front
of buffer

write happens
outside of buffer

Apple Fixes

| © 2017 by ANTID0TE All rights reserved

setattrlist() fixes

• Apple developers were kinda aware of the problem

• they started fixing the vulnerable code in iOS 6

• but they did not get it right for a while

• one reason might have been that the developer fixing the security
problem never escalated the security bug to the security team

26

| © 2017 by ANTID0TE All rights reserved

setattrlist() - Fix 1 in iOS 6.0

27

/* volume */
if (al.volattr & ATTR_VOL_INFO) {
 if (al.volattr & ATTR_VOL_NAME) {
 volname = cursor;
 ATTR_UNPACK(ar);
 /* attr_dataoffset cannot be negative! */
 if (ar.attr_dataoffset < 0) {
 VFS_DEBUG(ctx, vp, "ATTRLIST - ERROR: bad offset supplied (2) ", ar.attr_dataoffset);
 error = EINVAL;
 goto out;
 }

 volname += ar.attr_dataoffset;
 if ((volname + ar.attr_length) > bufend) {
 error = EINVAL;
 VFS_DEBUG(ctx, vp, "ATTRLIST - ERROR: volume name too big for caller buffer");
 goto out;
 }
 /* guarantee NUL termination */
 volname[ar.attr_length - 1] = 0;
 }
}

| © 2017 by ANTID0TE All rights reserved

setattrlist() - Fix 1 in iOS 6.0

28

/* volume */
if (al.volattr & ATTR_VOL_INFO) {
 if (al.volattr & ATTR_VOL_NAME) {
 volname = cursor;
 ATTR_UNPACK(ar);
 /* attr_dataoffset cannot be negative! */
 if (ar.attr_dataoffset < 0) {
 VFS_DEBUG(ctx, vp, "ATTRLIST - ERROR: bad offset supplied (2) ", ar.attr_dataoffset);
 error = EINVAL;
 goto out;
 }

 volname += ar.attr_dataoffset;
 if ((volname + ar.attr_length) > bufend) {
 error = EINVAL;
 VFS_DEBUG(ctx, vp, "ATTRLIST - ERROR: volume name too big for caller buffer");
 goto out;
 }
 /* guarantee NUL termination */
 volname[ar.attr_length - 1] = 0;
 }
}

Apple now detects
negative

attr_dataoffset

| © 2017 by ANTID0TE All rights reserved

setattrlist() - Fix 2 in iOS 7.0

29

/* volume */
if (al.volattr & ATTR_VOL_INFO) {
 if (al.volattr & ATTR_VOL_NAME) {
 volname = cursor;
 ATTR_UNPACK(ar);
 /* attr_length cannot be 0! */
 if ((ar.attr_dataoffset < 0) || (ar.attr_length == 0)) {
 VFS_DEBUG(ctx, vp, "ATTRLIST - ERROR: bad offset supplied (2) ", ar.attr_dataoffset);
 error = EINVAL;
 goto out;
 }

 volname += ar.attr_dataoffset;
 if ((volname + ar.attr_length) > bufend) {
 error = EINVAL;
 VFS_DEBUG(ctx, vp, "ATTRLIST - ERROR: volume name too big for caller buffer");
 goto out;
 }
 /* guarantee NUL termination */
 volname[ar.attr_length - 1] = 0;
 }
}

| © 2017 by ANTID0TE All rights reserved

setattrlist() - Fix 2 in iOS 7.0

30

/* volume */
if (al.volattr & ATTR_VOL_INFO) {
 if (al.volattr & ATTR_VOL_NAME) {
 volname = cursor;
 ATTR_UNPACK(ar);
 /* attr_length cannot be 0! */
 if ((ar.attr_dataoffset < 0) || (ar.attr_length == 0)) {
 VFS_DEBUG(ctx, vp, "ATTRLIST - ERROR: bad offset supplied (2) ", ar.attr_dataoffset);
 error = EINVAL;
 goto out;
 }

 volname += ar.attr_dataoffset;
 if ((volname + ar.attr_length) > bufend) {
 error = EINVAL;
 VFS_DEBUG(ctx, vp, "ATTRLIST - ERROR: volume name too big for caller buffer");
 goto out;
 }
 /* guarantee NUL termination */
 volname[ar.attr_length - 1] = 0;
 }
}

Apple now detects
a attr_length of 0

0-1 would be in MALLOC() size field

| © 2017 by ANTID0TE All rights reserved

setattrlist() - Remaining Problem up to iOS 9.0

31

/* volume */
if (al.volattr & ATTR_VOL_INFO) {
 if (al.volattr & ATTR_VOL_NAME) {
 volname = cursor;
 ATTR_UNPACK(ar);
 /* attr_length cannot be 0! */
 if ((ar.attr_dataoffset < 0) || (ar.attr_length == 0)) {
 VFS_DEBUG(ctx, vp, "ATTRLIST - ERROR: bad offset supplied (2) ", ar.attr_dataoffset);
 error = EINVAL;
 goto out;
 }

 volname += ar.attr_dataoffset;
 if ((volname + ar.attr_length) > bufend) {
 error = EINVAL;
 VFS_DEBUG(ctx, vp, "ATTRLIST - ERROR: volume name too big for caller buffer");
 goto out;
 }
 /* guarantee NUL termination */
 volname[ar.attr_length - 1] = 0;
 }
}

integer wrap
possible on 32 bit
volname will point

before buffer

on 32 bit
systems

we can address
anything before

buffer

| © 2017 by ANTID0TE All rights reserved

setattrlist() - Final Fix in iOS 9.0

32

/* volume */
if (al.volattr & ATTR_VOL_INFO) {
 if (al.volattr & ATTR_VOL_NAME) {
 volname = cursor;
 ATTR_UNPACK(ar);
 /* attr_length cannot be 0! */
 if ((ar.attr_dataoffset < 0) || (ar.attr_length == 0) ||
 (ar.attr_length > uap->bufferSize) ||
 (uap->bufferSize - ar.attr_length < (unsigned)ar.attr_dataoffset)) {
 VFS_DEBUG(ctx, vp, "ATTRLIST - ERROR: bad offset supplied (2) ", ar.attr_dataoffset);
 error = EINVAL;
 goto out;
 }

 if (volname >= bufend - ar.attr_dataoffset - ar.attr_length) {
 error = EINVAL;
 VFS_DEBUG(ctx, vp, "ATTRLIST - ERROR: volume name too big for caller buffer");
 goto out;
 }
 volname += ar.attr_dataoffset;
 /* guarantee NUL termination */
 volname[ar.attr_length - 1] = 0;
 }
}

parameter
verification

overkill

Exploitation

| © 2017 by ANTID0TE All rights reserved

Exploitation

• lifetime of bug was from early iOS to iOS 8.4.1

• we knew of it around the time of iOS 5

• lots of changes during that time to iOS

• different iOS versions required different exploits

34

| © 2017 by ANTID0TE All rights reserved

Exploitation on iOS 5

• at time of iOS 5 there were no mitigations in kernel land

• there was no user-land dereference protection at all in iOS

• also no protection against kernel code execution from user pages

• back then kernel exploits usually
– mapped malicious kernel data structures in user land

– used memory corruption to change kernel pointers into user land pointers

– from there code execution was never far away

35

| © 2017 by ANTID0TE All rights reserved

Exploitation of setattrlist() in iOS 5

• Heap-Feng-Shui
– fill kernel heap with C++ objects by opening driver connections to

AppleJPEGDriver via io_service_open_extended() and XML properties

– poke holes into allocation by reusing dictionary keys in XML property lists

– for details about this technique see  
“BlackHat 2012 - Stefan Esser - iOS Kernel Heap Armageddon Revisited”

36

| © 2017 by ANTID0TE All rights reserved

Exploitation of setattrlist() in iOS 5

• Memory Corruption
– call setattrlist() with a buffer size that puts the MALLOC() buffer into one of

the poked holes

37

| © 2017 by ANTID0TE All rights reserved

Exploitation of setattrlist() in iOS 5

• Memory Corruption
– trigger the out of bounds 0 byte write

– target the highest byte of an adjacent C++ object’s vtable pointer

38

| © 2017 by ANTID0TE All rights reserved

Exploitation of setattrlist() in iOS 5

• Memory Corruption
– vtable pointer now points to user-land where we map a fake vtable

– fake vtable points to “shell code” mapped into user land

– close IOKit driver connection to trigger execution

39

| © 2017 by ANTID0TE All rights reserved

Exploitation on iOS 6

• at time of iOS 6 the kernel got a number of mitigations
– KASLR required info leaking to determine kernel base address

– no more user space dereference

• we need to first break KASLR

• then trigger execution of code in kernel land

40

| © 2017 by ANTID0TE All rights reserved

Exploitation on iOS 6 - Breaking KASLR

• a bunch of info leaks vulnerabilities in iOS

• many have been known to various parties since iOS 6.0 required them
– mach_port_kobject()

– kext_request()

– io_registry_entry_get_property_bytes()

• however because this would be too easy we make our own

41

| © 2017 by ANTID0TE All rights reserved

Exploitation of setattrlist() in iOS 6 - Info Leaking

• Heap-Feng-Shui
– fill kernel heap with IOKit data objects by opening driver connections to

AppleJPEGDriver via io_service_open_extended() and XML properties

– ensure that data object storage buffers are interleaved with C++ objects

42

| © 2017 by ANTID0TE All rights reserved

Exploitation of setattrlist() in iOS 6 - Info Leaking

• Heap-Feng-Shui
– poke holes into allocation by reusing dictionary keys in XML property lists

43

| © 2017 by ANTID0TE All rights reserved

Exploitation of setattrlist() in iOS 6 - Info Leaking

• Memory Corruption
– call setattrlist() with a buffer size that puts the MALLOC() buffer into one of

the poked holes

44

| © 2017 by ANTID0TE All rights reserved

Exploitation of setattrlist() in iOS 6 - Info Leaking

• Memory Corruption
– trigger the out of bounds 0 byte write and target the lowest byte of an

adjacent IOKit data object’s storage pointer

45

| © 2017 by ANTID0TE All rights reserved

Exploitation of setattrlist() in iOS 6 - Info Leaking

• Memory Corruption
– use io_registry_entry_get_property_bytes() to read back the data

– because data storage is interleaved with C++ object this will get us a vtable
pointer which is inside the kernel image and therefore breaks KASLR

– depending on heap layout this also leaks a heap pointer at the same time
otherwise we need to redo the info leak and this time target heap location
pointers

46

| © 2017 by ANTID0TE All rights reserved

Exploitation of setattrlist() in iOS 6 - Taking Control

• Heap-Feng-Shui
– fill kernel heap with OSData and OSArray objects by opening driver connections to

AppleJPEGDriver via io_service_open_extended() and XML properties

– ensure that OSData object and their data storage buffers are interleaved

– fill the arrays with pointers to OSData objects

– poke holes in between OSArray objects

47

fake_object
made with leaked
heap pointer and

leaked kernelbase

| © 2017 by ANTID0TE All rights reserved

Exploitation of setattrlist() in iOS 6 - Taking Control

• Memory Corruption
– call setattrlist() with a buffer size that puts the

MALLOC() buffer into one of the poked holes

48

| © 2017 by ANTID0TE All rights reserved

Exploitation of setattrlist() in iOS 6 - Taking Control

• Memory Corruption
– trigger the out of bounds 0 byte write and

target the lowest byte of an OSData pointer
inside an adjacent OSArray array bucket

49

| © 2017 by ANTID0TE All rights reserved

Exploitation of setattrlist() in iOS 6 - Taking Control

• Memory Corruption

– OSArray now contains an attacker
controlled fake object

– closing the driver connection will destroy
the OSArray and try to destroy our fake
object which will trigger our code

– then e.g. trigger a pivot-gadget to start a
ROP chain inside the heap

50

| © 2017 by ANTID0TE All rights reserved

Exploitation on iOS 7

• iOS 6 exploit would work on iOS 7 but we wanted to experiment

• at time of iOS 7 new code was added to the Zone Allocator

• new pagelist feature added unprotected meta data at end of page
– double linked list, zone back pointer, some counters

• new feature was only used for some zones

• double linked list meant unprotected unlink()

• we wanted to attack this

51

| © 2017 by ANTID0TE All rights reserved

Exploitation of setattrlist() in iOS 7 - Info Leaking

• we wanted an easier and more stable exploit

• so we just used the kext_request() information leak to break KASLR

• this is an API giving back mach-o headers of kernel and KEXT
– publicly known to be problematic since  

“HITB2012KUL - Mark Dowd and Tarjei Mandt - iOS 6 Security”

– contained multiple different bugs leaking kernel base address

– Apple needed multiple attempts to fix it correctly

52

| © 2017 by ANTID0TE All rights reserved

Exploitation of setattrlist() in iOS 7 - Taking Control

• call setattrlist() with a buffer size a bit above 0x1000

53

| © 2017 by ANTID0TE All rights reserved

Exploitation of setattrlist() in iOS 7 - Taking Control

• call setattrlist() with a buffer size a bit above 0x1000

• trigger the 0 byte write and target the second byte of the
MALLOC() size field in front of the buffer

• size field becomes very very small

• the FREE() will try to put the buffer into a very small zone

• the small zone uses the new pagelist feature

54

| © 2017 by ANTID0TE All rights reserved

Exploitation of setattrlist() in iOS 7 - Taking Control

• because target zone uses pagelist feature
the end of our page will be used as page
metadata

• however the content of that fake metadata
is fully controlled by us

• we fully control the forward and next
pointer of the double linked list and the
counters

55

| © 2017 by ANTID0TE All rights reserved

Exploitation of setattrlist() in iOS 7 - Taking Control

• trick allocator into removing our page from list of partially
used pages and adding it to the list of all free pages

• this will unlink our page from the double linked list which
gives us a write anywhere primitive

56

| © 2017 by ANTID0TE All rights reserved

Exploitation of setattrlist() in iOS 7 - Taking Control

• we setup the pointers like this

– next: scratch buffer pointer in kernel data  
(lowest byte will overwrite our target)

– prev: arbitrary kernel address where we
want to write one byte to

• we can repeat this exploit endlessly

• we can write one byte at a time anywhere

• we can write any data structure we want
and make the kernel use it

57

| © 2017 by ANTID0TE All rights reserved

Exploitation on iOS 8

• the iOS 7 exploit stops working in iOS 8

• Apple has protected the unsafe unlink operations

• we can go back to the exploitation technique used in iOS 6

• maybe combine with io_registry_entry_get_property_bytes() info leak

• would make the whole exploit way easier

58

Conclusion

| © 2017 by ANTID0TE All rights reserved

Conclusion

• Apple are sometimes aware of security bugs but don’t fix them correctly

• architectural changes and mitigations in new iOS versions sometimes  
require reimplementation of exploits

• but sometimes those change make exploitation easier

• more details and POC will be available next week on  
https://www.antid0te.com

• we are hiring in Singapore … if you are interested in iOS / MacOS contact us

60

https://www.antid0te.com

Questions ?
www.antid0te.com

© 2017 by ANTID0TE. All rights reserved

