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Abstract. Attackers have evolved classic code-injection attacks, such
as those caused by buffer overflows to sophisticated Turing-complete
code-reuse attacks. Control-Flow Integrity (CFI) is a defence mecha-
nism to eliminate control-flow hijacking attacks caused by common mem-
ory errors. CFI relies on static analysis for the creation of a program’s
control-flow graph (CFG), then at runtime CFI ensures that the program
follows the legitimate path. Thereby, when an attacker tries to execute
malicious shellcode, CFI detects an unintended path and aborts execu-
tion. CFI heavily relies on static analysis for the accurate generation of
the control-flow graph, and its security depends on how strictly the CFG
is generated and enforced.

This paper reviews the CFI schemes proposed over the last ten years
and assesses their security guarantees against advanced exploitation tech-
niques.

Keywords: Control-Flow Integrity · Code-reuse attacks · Operating
system security

1 Introduction

Operating systems must ensure that both their own code and the code of their
applications remain incorruptible and consequently secure and reliable against
attackers. Since code-injection attacks are widely known, adversaries nowadays
commonly exploit memory corruption bugs to subvert the control-flow of the
operating system or the applications that are being executed within it. Rather
than focusing on protecting the integrity of code, with complete memory safety
or developing safe dialects of C/C++, modern defences try to protect the control-
flow integrity (CFI) of these systems.

Since CFI [1] was introduced to avoid these problems and issues, different
implementations and versions of this techniques have been proposed by the com-
munity that try to make it practical while ensuring the completeness of its pro-
tection. In addition, new attacks have been proposed that limit the effectiveness
of these methods. Due to the raising relevance of CFI methods for the system
security community, in this paper we present the first comprehensive literature
review and discussion of control-flow integrity defences and the attacks that try
to subvert them.
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2 Control-Flow Integrity

C/C++ code goes hand in hand with memory corruption bugs, which allow an
adversary to launch attacks that exploit those memory errors. Code injection
attacks due to stack-based or heap-based overflows, dangling pointers/use-after-
free, and format string vulnerabilities are common, and can be prevented using
defences such as write-xor-execute (W⊕E)/Data Execution Prevention (DEP) [4]
and stack canaries [16] which are included in nowadays compilers and operat-
ing systems. Nevertheless code-reuse attacks, like return-into-libc [36], return-
oriented programming (ROP) [44], and jump-oriented programming (JOP) [5,12]
still can not be fully prevented. Operating systems themselves are not exempt
from code-reuse attacks, such as return-to-user (ret2usr) [33], a kernel level vari-
ant of return-into-libc, and sigreturn oriented programing (SROP) [6], which
exploits the signal handling capabilities of UNIX like systems to deploy gad-
gets in the same manner that ROP and JOP do with ret and jmp instructions
respectively.

Operating systems deploy statistical defences to protect user space and ker-
nel space against code-reuse attacks; namely address space layout randomisation
(ASLR) [47], and Kernel ASLR [22]. However, these defences can be circum-
vented due to information leakage and just-in-time code-reuse attacks both for
user [45] and kernel [29] space.

Taking into account these problems, Abadi et al. introduced control-flow
integrity (CFI) [1], a defence mechanism to prevent code-reuse attacks, which
try to subvert the legitimate execution flow of a program.

CFI works in two phases, firstly, it computes the Control-Flow Graph (CFG)
of the program by static analysis, either using its source code or its binary;
afterwards, during program execution, CFI enforces that the program follows
through the legitimate execution path; otherwise the program is aborted.

In the computation phase, CFI is concerned with points-to analysis, the static
analysis that deals with the possible values of a pointer, because it affects the
precision in which a CFG is generated [8] and consequently, the precision in
which the enforcement phase will enforce the legitimate execution path. Taking
into account the precision, CFI implementations can be categorised into (i) flow-
sensitive or flow-insensitive and (ii) context-sensitive or context-insensitive. On
the one hand, flow-sensitive algorithms use the control-flow information of a
program to determine the possible values of a pointer, whereas flow-insensitive
algorithms compute a set of values that are valid for all program inputs [25,26].
On the other hand, context-sensitive algorithms take into account the context
when analysing a function, preventing values from propagating to impracticable
paths and thus guaranteeing that the context of a call remains independent from
other call contexts; in contrast, context-insensitive algorithms allow a function
to return to the computed set of all callers [26,52].

In the enforcement phase, CFI may take into account forward (e.g. indirect
calls or jumps) and backward (e.g. return instructions) control-flow transfers.
CFI solutions that provide just a forward enforcement of control-flow transfers
have been found insecure [10,21,23], whereas solutions that enforce the backward
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transfers usually rely on a shadow stack, a structure that holds copies of the
return addresses present in each of the stack frames of the original stack, causing
up to a ∼ 10% increase in the program overhead [19], or use the last-branch
record registers (LBR) [3,31] which are only available to a subset of CPUs and
have a limited storing capacity.

The vast majority of CFI implementations aim to protect the user space, and
come in the flavours of compiler extensions, source code or binary code patching
frameworks and kernel modules, whereas a small subset intend to secure the
operating system deploying kernel modifications or new kernel modules.

2.1 Userland Implementations

The original CFI [1] operates on x86 binaries by machine-code rewriting. For the
forward control-flow transfers, the rewriting process includes a ID insertion at
each destination, and a ID-check before each source; then at runtime the source
ID and the destination ID must coincide. To ensure that a function call returns
to the appropriate call site, a backward control-flow transfer, the implementation
uses a shadow call stack relying on x86’s segmentation capabilities. CFI requires
(i) the code to be non-writable, to prevent attackers from rewriting the ID-check,
and (ii) the data to be non-executable, to prevent attackers to execute data
generated with the expected ID. The first requirement is true in modern OSes,
excluding the loading time of dynamic libraries and runtime code-generation, and
the second requirement is enforced with W⊕E. This implementation makes the
assumption that two destinations are equivalent if they are called from the same
source, thus introducing imprecision in the CFG and thereby in the enforcement
phase.

MoCFI [20] provides CFI protection on iOS devices’ applications running on
ARM processors. It addresses the special issues of ARM architecture (e.g. the
nonexistence of dedicated return instructions). As the original CFI, it also oper-
ates on binaries. The authors generate a CFG of the application and a patchfile
containing metadata of the indirect branches and function calls in the applica-
tion; dynamic libraries used in the application are not protected. In the runtime
enforcement phase, the patchfile is used by the MoCFI shared library, generating
a patched application which is executed within the CFI policy. MoCFI uses a
shadow stack to protect calls and returns. For the forward control-flow trans-
fers however, it cannot protect indirect jumps/calls whose destination cannot
be identified on the static analysis; thereby they can target any valid address
within the function, or any valid function respectively.

Unlike MoCFI, CCFIR [55] and Bin-CFI [56] are two other binary imple-
mentations that include protection for libraries. On the one hand, CCFIR works
Windows x86 PE executables, with partial support for libraries. It builds upon
Abadi et al.’s approach and incorporates a third new ID-check for returns to sen-
sitive and non-sensitive functions. This implementation suffers from the same
imprecision as Abadi et al.’s for forward edges and introduces it in backward
edges. On the other hand, Bin-CFI protects stripped Linux x86 binaries includ-
ing shared libraries. This approach is similar to the original CFI scheme and
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has lower security guarantees than CCFIR. Recent studies have found both
Bin-CFI and CCFIR protections insufficient [21,23], since grouping destinations
into equivalence classes is not strong enough to prevent them for being used as
ROP/JOP gadgets.

kBouncer [40] is a hardware based Windows toolkit that relies on Intel
Nehalem architecture’s LBR registers to retrieve the sequence of the latest
16 indirect branch instructions at critical points (e.g. system calls). In total,
kBouncer protects the execution of 52 Windows API functions. Similar to
kBouncer, ROPecker [14] is a Linux x86 kernel module that utilises the LBR
register to prevent code-reuse attacks. Both schemes depend on chain length
and gadget length heuristics to prevent such attacks. Nevertheless they can be
bypassed by choosing the right sized gadget-chain length [10,21,24].

A recent binary based x86/64 CFI implementation, O-CFI [35], combines
code randomisation with CFI checking. O-CFI first computes the permissible
destination addresses for each indirect branch, then it transforms the policy
that indirect branches must reach to a valid destination into a bounds-checking
problem; thereby O-CFI has to check that the destination address exists within
min/max address boundaries. These boundaries are protected using code ran-
domisation and then checked making use of Intel’s memory protection extensions
(MPX) [30]. O-CFI uses a relaxed version of forward and backward control-flow
transfer checks and consequently, can be bypassed.

All the previously presented binary level approaches [1,20,35,40,55,56] fail
to capture complete context sensitivity; whereas just some of them support par-
tial (backward) context sensitivity due to the use of a shadow stack [1,20].
PathArmor [49], is the first binary level scheme to tackle context sensitivity
for forward and backward edges. Context-sensitive CFI methods need to keep
track of the paths of the executed control-flow transfers, to later on enforce
that the execution follows the legitimate path. Instead of using a shadow stack,
PathArmor employs LBR registers to emulate a path monitoring mechanism
limited by the number of LBR registers (just 16). PathArmor outperforms all
previous protection schemes for forward edge transfers. However, shadow stack
based approaches are still more reliable for backward edges due to the limitations
that current hardware imposes.

Regarding CFI implementations that rely on source-code, Tice et al. [48]
present two different forward-edge protection mechanisms integrated in pro-
duction compilers, Virtual-Table Verification (VTV) and Indirect Function-Call
Checks (IFCC) for GCC and LLVM respectively. Stack based attacks have been
found effective bypassing VTV/IFCC [15] and the subsequent compilers have
been patched. SafeDispatch [32] is a earlier LLVM compiler extension, and like
VTV, aims to protect virtual tables (vtables) for C++ virtual calls; both VTV
and SafeDispatch fail to provide full control-flow protection since they focus
just on forward edges. Further research has been done with the objective of
protecting vtables, resulting in two binary level implementations, VfGuard [42]
and VTint [54]; which unfortunately are also limited to partial control-flow
protection.
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A recent form of control-flow reuse attack, Counterfeit Object-oriented Pro-
gramming (COOP) [43] can mount Turing-complete attacks using gadgets of C++
virtual functions. COOP is effective against the original CFI, bin-CFI, CCFIR,
VTint and partially against IFCC, VfGuard and PathArmor. In contrast, COOP
can be prevented at binary level by TypeArmor [50], and at source code level
with the compiler extensions SafeDispatch, VTV, VTrust [53] and VTI [7].

Niu and Tan introduced Modular CFI (MCFI) [37], a new scheme which
extends CFI with modular compilation. Building upon MCFI the authors present
RockJIT [38] which enforces CFI in Just-In-Time compilers; both MCFI and
RockJIT induce some imprecision in the edge generation since they apply the
same assumption as the original CFI for equivalent targets. Their following con-
tribution, πCFI (per-input CFI) [39], on the contrary, introduces the highest
security guarantees for a source code based CFI solution. πCFI differs from all
previous CFI implementations in the way it addresses the CFG generation. Con-
servative CFI implementations utilise static analysis to compute the CFG before
the enforcement phase, this analysis is considered hard since it has to take into
account all the possible input values for the given program; moreover, CFI’s
security guarantees are strictly bounded to the CFG’s precision. Niu and Tan
point out than even if a perfect CFG were possible, it would still include unnec-
essary edges for a given input. Thereby they tackle the CFG generation in the
following way; firstly, they generate the conservative CFG for all program inputs
(building upon MCFI and RockJIT), then during program execution, given an
input, πCFI generates CFG edges on the fly, but just those which comply with
the conservative all-input CFG are enforced. This innovative scheme provides
less backward edge protection compared to shadow stack approaches, but higher
guarantees that other backward edge approaches. Concerning forward edges,
πCFI has stronger assurance that original CFI due to the per-input mechanism.

2.2 Kernel-Space Implementations

State-based CFI (SBCFI) [41] is a CFI implementation for Xen and VMware
Workstation virtual machine monitors. Unlike CFI enforced in userland, kernel
space CFI cannot guarantee that the generated CFG is read only, nor that its
data is non-executable since an attacker with access to the kernel space could also
have access to page tables, and thus be able to change their properties. Thereby,
SBCFI enforces a relaxed CFI by periodically checking the current kernel’s CFG
against the initial kernel’s CFG. This implementation provides light security
guarantees since it does not enforce backward edges and the support for forward
edges is limited.

Hypersafe [51] is a LLVM framework extension that targets hypervisors.
Hypersafe introduces the concepts of non-bypassable memory lockdown and
restricted pointer indexing to introduce CFI on hypervisors. The former method
is in charge of guaranteeing the integrity of the hypervisor’s code and static
data; the later delimits the contents of the targets of the control data (function
pointers and return addresses) into a target table, to then rewrite each func-
tion pointer or return address to a pointer index to the target table. Using the
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restricted pointer indexing, Hypersafe can either allow light security guarantees
by allowing a function to return to any address entry on the target table, or a
more strict scheme, by generating a target table for each function and allowing
the function to return to a subset of all returns, made specifically for that func-
tion. Hypersafe implements backward edge enforcement policies but not as safe
as those provided by shadow stack schemes, and for forward edges, in its strict
scheme, a policy more accurate than the orignal CFI but less that the most strict
user space implementations (PathArmor and πCFI).

kGuard [33] is a GCC compiler extension whose aim is to protect the ker-
nel against ret2usr attacks. kGuard combines CFI with program shepherding.
Program shepherding [34] is a technique that permits to implement arbitrary
restrictions to code origins and control flow transfers. Upon compiling a kernel
with kGuard, Control-Flow Assertions (CFA) are introduced before each control-
flow transfer. These assertions are comparable to the original CFI checks, but
unlike them, CFAs are not checked against a CFG to enforce a valid edge, they
just ensure that the target address exists within kernel space instead. This secu-
rity mechanism cannot withstand ROP/JOP like attacks since it is comparable
to just enforcing weak forward control-flow transfers, like the traditional CFI,
and also a weak policy for backward transfers.

KCoFI [17] provides CFI for commodity OSs utilising the infrastructure
provided by the Secure Virtual Architecture (SVA) [18] virtual machine. This
infrastructure is used to handle low level operations regarding the MMU, general
I/O, signal dispatch and context switching. KCoFI is built on top of the SVA
virtual machine, and thereby requires the OS and applications to instrument to
be compiled to the virtual instruction set provided by the SVA architecture. As
the original CFI, KCoFI enforces a CFI policy that is not context-sensitive.

3 Discussion

Table 1 summarises the implementations reviewed in this paper, the top part
of the table lists userland implementations whereas the bottom part lists ker-
nel space implementations. Regarding userland CFI, on the one hand, binary
schemes are more common, nevertheless these schemes are known to be less
secure than their source-code based counterparts. On the other hand, some
source schemes (VTV, IFCC, SafeDispatch, TypeArmor) tend to focus on just
forward edges, and thereby are prone to ROP attacks; while others enforce poli-
cies that fall into the equivalent classes paradigm which just can partially prevent
ROP/JOP. Concerning kernel space, the implementations enforce modified CFI
methods due to the peculiarities that protecting a kernel involves. Hypersafe
is the strongest implementation followed by KCoFI. The former provides lim-
ited context-sensitivity for both edges, whereas the later falls into the equivalent
classes paradigm.

In summary, the strongest implementations provide some level of context-
sensitivity for both edges. PathArmor utilises the LBR registers for a hardware
limited context-sensitivity, πCFI builds upon the modular CFG idea and Hyper-
safe uses restricted pointer indexing to provide a limited context-sensitivity.
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Table 1. Comparison of CFI implementations. B stands for binary, S source-code, KM
kernel module, VMM virtual machine monitor; CS context-sensitive, EC equivalent
classes, H heuristics, ∅ the policy is not enforced. Regarding attacks, Th. stands for
theoretical attacks.

Precision

Scheme Forward Backward Known attacks

Original CFI B EC CS COOP

MoCFI B EC CS Limited JOP

CCFIR B EC EC [23], COOP

Bin-CFI B EC EC [21,23], COOP

kBouncer B H H [10,21,24]

ROPecker KM H H [10,21,24]

O-CFI B EC EC Th. ROP/JOP

PathArmor B Hardware limited CS Hardware limited CS History flush

VTV S CS ∅ COOP

IFCC S CS ∅ ROP

SafeDispatch S CS ∅ ROP

TypeArmor B EC ∅ ROP

MCFI S EC EC Th. ROP/JOP

RockJIT S EC EC Th. ROP/JOP

πCFI S Limited CS Limited CS Limited ROP/JOP

SBCFI VMM CFG comparison ∅ ROP

Hypersafe S Limited CS Limited CS Limited ROP/JOP

kGuard S Exists in kernel space Exists in kernel space ROP/JOP

KCoFI S EC EC Th. ROP/JOP

Future trends of work are focusing on more precise context-sensitive schemes
and addressing the implementation of safer CFI schemes for commodity OSs.

4 Related Work

Data-Flow Integrity. Chen et al. [13] raised awareness of non-control data
attacks the same year as Abadi et al.’s proposed CFI; one year before, Castro
et al. proposed data-flow integrity (DFI) [11], a defence mechanism that tries to
protect the legitimate data-flow analogously to CFI with control-flow.

Due to the attention that the research community has given to code
injection and code-reuse attacks, attackers have directed their efforts into the
creation of non-control data attacks, which have been recently found to be
Turing-complete [28] and moreover, can be automatically constructed [27].

CFI mechanisms cannot withstand non-control data attacks [9] since they
follow the legitimate execution flow and thereby pose a major threat for OSs and
userland programs. The research community has proposed several approaches to
protect userland applications [2,11] and kernel space [18,46] but they have not
been proven yet to be practical due to performance issues.
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5 Conclusions

The academia has proposed several methods to protect applications and operat-
ing systems against code-reuse attacks. These approaches build upon control-flow
integrity to prevent code-reuse attacks, but since control-flow integrity’s effec-
tiveness is closely bounded with the precision in which its control-flow graph is
generated, not all schemes have proven to be effective against code-reuse attacks.
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