
SoK: Systematic Classification of Side-Channel Attacks on Mobile Devices

Raphael Spreitzer∗, Veelasha Moonsamy†, Thomas Korak∗ and Stefan Mangard∗
∗Graz University of Technology, IAIK, Graz, Austria

†Radboud University, Digital Security Group, Nijmegen, The Netherlands

Abstract—Side-channel attacks on mobile devices have gained
increasing attention since their introduction in 2007. While
traditional side-channel attacks, such as power analysis at-
tacks and electromagnetic analysis attacks, required physical
presence of the attacker as well as expensive equipment, an
(unprivileged) application is all it takes to exploit the leaking
information on modern mobile devices. Given the vast amount
of sensitive information that are stored on smartphones, the
ramifications of side-channel attacks affect both the security
and privacy of users and their devices.

In this paper, we propose a new categorization system for
side-channel attacks on mobile devices, which is necessary since
side-channel attacks have evolved significantly since their intro-
duction during the smartcard era. Our proposed classification
system allows to analyze side-channel attacks systematically,
and facilitates the development of novel countermeasures. Be-
sides this new categorization system, the extensive overview of
existing attacks and attack strategies provides valuable insights
on the evolving field of side-channel attacks on mobile devices.
We conclude by discussing open issues and challenges in this
context and outline possible future research directions.

1. Introduction

Side-channel attacks exploit (unintended) information
leakage of computing devices or implementations to infer
sensitive information. Starting with the seminal works of
Kocher [1], Kocher et al. [2], Quisquater and Samyde [3],
as well as Mangard et al. [4], many follow-up papers
considered attacks against cryptographic implementations to
exfiltrate key material from smartcards by means of timing
information, power consumption, or electromagnetic (EM)
emanation. Although these “traditional” side-channel attacks
required the attacker to be in physical possession of the
device, different attacks assumed different types of attackers
and different levels of invasiveness. To systematically ana-
lyze side-channel attacks, they have been categorized along
the following two orthogonal axes:

1) Active vs passive: Depending on whether the attacker
actively influences the behavior of the device or only
passively observes leaking information.

2) Invasive vs semi-invasive vs non-invasive: Depending
on whether or not the attacker removes the passivation
layer of the chip, depackages the chip, or does not
manipulate the packaging at all.

However, with the era of cloud computing, the scope and
the scale of side-channel attacks have changed significantly
in the early 2000s. While early attacks required attackers to
be in physical possession of the device, newer side-channel
attacks, for example, cache-timing attacks [5]–[8] or DRAM
row buffer attacks [9], are conducted remotely by executing
malicious software in the targeted cloud environment. In
fact, the majority of recently published side-channel attacks
rely on passive attackers and are strictly non-invasive.

With the advent of mobile devices, and in particular the
plethora of embedded features and sensors, even more so-
phisticated side-channel attacks targeting smartphones have
been proposed since around the year 2010. For example, at-
tacks allow to infer keyboard input on touchscreens via sen-
sor readings from native apps [10]–[12] and websites [13],
to deduce a user’s location via the power consumption
available from the proc filesystem (procfs) [14], and to infer
a user’s identity, location, and diseases [15] via the procfs.

Although side-channel attacks and platform security are
already well-studied topics, it must be noted that smartphone
security and associated privacy aspects differ from platform
security in the context of smartcards, desktop computers,
and cloud computing. Especially the following key enablers
allow for more devastating attacks on mobile devices.

1) Always-on and portability: First and foremost, mobile
devices are always turned on and due to their mobility
they are carried around at all times. Thus, they are
tightly integrated into our everyday life.

2) Bring your own device (BYOD): To decrease the num-
ber of devices carried around, employees are encour-
aged to use private devices to process corporate data
and to access corporate infrastructure, which clearly
indicates the importance of secure mobile devices.

3) Ease of software installation: Due to the appifica-
tion [16] of mobile devices, i.e., where there is an
app for almost everything, additional software can be
installed easily by means of established app markets.
Hence, malware can also be spread at a fast pace.

4) OS based on Linux kernel: Modern mobile operating
systems (OS), for example, Android, are based on the
Linux kernel. The Linux kernel, however, has initially
been designed for desktop machines and information or
features that are considered harmless on these platforms
turn out to be an immense security and/or privacy threat
on mobile devices (cf. [17]).

5) Features and sensors: Last but not least, these de-
vices include many features and sensors, which are not

1

ar
X

iv
:1

61
1.

03
74

8v
1 

 [
cs

.C
R

] 
 1

1 
N

ov
 2

01
6



present on traditional platforms. Due to the inherent na-
ture of mobile devices (always-on and carried around,
inherent input methods, etc.), such features often allow
for devastating side-channel attacks [10]–[15]. Besides,
these sensors have also been used to attack external
hardware, such as keyboards [18], [19], and computer
hard drives [20], to infer videos played on TVs [21],
and even to attack 3D printers [22], [23], which clearly
demonstrates the immense power of mobile devices.

Today’s smartphones are vulnerable to (all or most of
the) existing side-channel attacks against smartcards and
cloud computing infrastructures. However, due to the above
mentioned key enablers, a new area of side-channel attacks
has evolved. The appification [16] of mobile platforms—
i.e., where there is an app for anything—allows to easily
target devices and users at an unprecedented scale compared
to the smartcard and the cloud setting. Yet again, the ma-
jority of these attacks are passive and non-invasive, which
means that the existing side-channel classification system
is not appropriate anymore as it is too coarse grained for
a systematic categorization of modern side-channel attacks
against mobile devices.

In this work, we aim to close this gap by establish-
ing a new categorization system for modern side-channel
attacks on mobile devices. We take a step back and dis-
cuss existing side-channel attacks in a broader context. The
resulting survey of existing literature aims to provide a
better understanding of threats arising from modern side-
channel attacks. Then, we systematically categorize existing
side-channel attacks on smartphones and critically discuss
resulting security and privacy implications. Ultimately, we
identify commonalities of side-channel attacks and thereby
provide insights to the immense number of different attack
possibilities. Overall, the goal is that the identified common-
alities of such attacks allow researchers to cope with these
attacks on a larger scale. Although dedicated countermea-
sures to prevent specific attacks have already been proposed,
their effectiveness has not been investigated extensively. In
this paper, we aim to foster further research through the
development and evaluation of effective countermeasures.
Moreover, the mobile ecosystem makes it hard to distribute
security patches (i.e., possible countermeasures) and, thus,
OS designers also struggle with these vulnerabilities. We
aim to address these issues and challenges by introducing a
new categorization system that allows for a more systematic
investigation of modern side-channel attacks and possible
mitigation techniques.

1.1. High-Level Categorization

It is important to note that side-channel attacks against
smartphones can be launched by attackers who are in physi-
cal possession of these devices and also by remote attackers
who managed to spread a seemingly innocuous application
via any of the existing app stores. In some cases such
side-channel attacks can even be launched via a website
and, thus, without relying on the user to install an app.
Nevertheless, in today’s appified software platforms where

WHAT?
HW (physical)

SW (logical)

HOW?
Physical
presence

(local)

SW only
(remote)

Smartcards
Cloud
Smartphones

Figure 1. Scope of attacks for smartcards, cloud infrastructures, and smart-
phones.

apps are distributed easily via available app markets, an
attack scenario requiring the user to install a malicious game
is entirely practical. Interestingly, side-channel attacks on
smartphones allow for exploitation of physical properties as
well as software properties. More specifically, a malicious
application can exploit the accelerometer sensor in order
to attack the user input (cf. [10], [11]), which is due to
the inherent input method relying on touchscreens. In addi-
tion, attacks can also be conducted by exploiting software
features provided by the Android API or the mobile OS
itself (cf. [14], [15]). This clearly indicates that smartphones
significantly broaden the scope as well as the scale of
attacks, which is also stressed by the numerous scientific
contributions published in this area of research.

Figure 1 illustrates a high-level categorization system for
side-channel attacks and how existing side-channel attacks
against smartcards, cloud computing infrastructures, and
smartphones relate to it. We indicate the type of infor-
mation that is exploited (WHAT?) and how the adversary
learns the leaking information (HOW?) on the y-axis and
x-axis, respectively. For instance, attackers usually exploit
hardware-based information leakage (or physical properties)
[4] of smartcards by measuring, for example, the power
consumption with an oscilloscope. In order to exploit this
information, the attacker must be in possession of the device
under attack. In contrast, side-channel attacks against cloud-
computing infrastructures do not (necessarily) require the
attacker to be physically present—unless we consider a
malicious cloud provider—as the attacker is able to remotely
execute software. Usually, these attacks exploit microarchi-
tectural behavior (like cache attacks [5]–[8]) or software
features in order to infer secret information from co-located
processes. Even more manifold and diverse side-channel
attacks have been proposed for smartphones, which is in-
dicated by the larger area in Figure 1. These manifold side-
channel attacks mainly result from the five aforementioned
key-enablers. In the remainder of this paper we will refine
this high-level categorization system in order to systemati-
cally analyze modern side-channel attacks.

2



1.2. Outline

Section 2 introduces the basic notion of side-channel
attacks, discusses different types of information leaks, and
provides a definition for software-only side-channel attacks.
In Section 3, we introduce our new categorization system for
modern side-channel attacks. We survey existing attacks in
Sections 4, and 5, and we discuss existing countermeasures
in Section 6. We classify existing attacks according to our
newly introduced classification system in Section 7. Finally,
we discuss open issues, challenges, and future research
directions in Section 8 and conclude in Section 9.

2. Taxonomy

In this section, we define the general notion of side-
channel attacks and we establish the boundaries between
side-channel attacks and other attacks on mobile devices.
We stress that side-channel attacks do not exploit specific
software vulnerabilities of the OS or any library, but in-
stead exploit available information that is (in some cases)
published for benign reasons. Furthermore, we also discuss
how the key enablers presented above allow for so-called
software-only attacks on today’s smartphones.

2.1. Basic Concept of Side-Channel Attacks

Passive Side-Channel Attacks. The general notion of
a passive side-channel attack can be described by means
of three main components, i.e., target, side-channel vector,
and attacker. A target represents anything of interest to
possible attackers. During the computation or operation of
the target, it influences a side-channel vector and thereby
emits potential sensitive information. An attacker who is
able to observe these side-channel vectors potentially learns
useful information related to the actual computations or
operations performed by the target.

Active Side-Channel Attacks. In addition to passively
observing leaking information, an active attacker also tries
to tamper with the device or to modify/influence the tar-
geted device via a side-channel vector, e.g., via an external
interface or environmental conditions. Thereby, the attacker
aims to influence the computation/operation performed by
the device in a way that leads to malfunctioning, which in
turn allows for possible attacks either indirectly via the leak-
ing side-channel information or directly via the (erroneous)
output of the targeted device.

Figure 2 illustrates the general notion of side-channel
attacks. A target emits specific side-channel information
as it influences specific side-channel vectors. For example,
physically operating a smartphone via the touchscreen, i.e.,
the touchscreen input represents the target, causes the smart-
phone to undergo specific movements and accelerations
in all three dimensions. In this case, one possible side-
channel vector is the acceleration of the device, which can
be observed via the embedded accelerometer sensor and
accessed by an app via the official Sensor API. The relations
defined via the solid arrows, i.e., target → side-channel

Target
(e.g., crypto,

keyboard,
behavior)

Side-channel
vector

(e.g., power, timing,
procfs, sensors)

(1) influences

(4) influences

Attacker
(e.g., device, chip,

wire, software)

(2) is observed

(3) modifies/influences

Figure 2. General notion of active and passive side-channel attacks. A
passive side-channel attack consists of steps (1) and (2), whereas an active
side-channel attack also includes steps (3) and (4).

Side-channel information leaks

Unintended
information leaks

Information published
on purpose

Execution time

Power consumption

EM emanation

Memory footprint

Sensor information

Data consumption

Figure 3. Categorization of side-channel information leaks.

vector → attacker, represent passive side-channel attacks.
The relations defined via the dashed arrows, i.e., target
L99 side-channel vector L99 attacker, represent active side-
channel attacks where the attacker—in addition to passively
observing leaking information—also tries to actively influ-
ence/manipulate the target via a side-channel vector.

Irrespective of whether an attacker is passive or active,
we consider only side-channel attacks. These attacks do not
exploit software bugs or anomalies within the OS or apps
like, e.g., buffer overflow attacks. While software bugs or
anomalies are in general easy to fix, side-channel informa-
tion leaks are not that trivial to detect and fix.

2.2. Types of Side-Channel Information Leaks

Considering existing side-channel attacks on mobile de-
vices, we identify two categories of side-channel informa-
tion leaks, namely unintended information leaks and infor-
mation published on purpose. Figure 3 depicts these two
types of information leaks. Informally, side-channel attacks
exploiting unintended information leaks of computing de-
vices can also be considered as “traditional” side-channel
attacks since this category has already been extensively
analyzed and exploited during the smartcard era [4]. For
example, unintended information leaks include the execution
time, the power consumption, or the electromagnetic emana-
tion of a computing device. This type of information leak is
considered as unintended because smartcard designers and
developers did not plan to leak the timing information or
power consumption of computing devices on purpose.

The second category of information leaks (referred to
as information published on purpose) is mainly a result
of the ever-increasing number of features provided by to-
day’s smartphones. In contrast to unintended information

3



leaks, the exploited information is published on purpose and
for benign reasons. For instance, specific features require
the device to share (seemingly harmless) information and
resources with all applications running in parallel on the
system. This information as well as specific resources are
either shared by the OS directly (via the procfs) or through
the official Android API.1 Although this information is
extensively used by many legitimate applications for benign
purposes2, it sometimes turns out to leak sensitive infor-
mation and, thus, leads to devastating side-channel attacks.
The fundamental design weakness of assuming information
as being innocuous in the first place also means that it is
not protected by dedicated permissions. Many investigations
have impressively demonstrated that such seemingly harm-
less information can be used to infer sensitive information
that is otherwise protected by dedicated security mecha-
nisms, such as permissions. Examples include the memory
footprint [25] and the data-usage statistics [26] that have
been shown to leak a user’s browsing behavior and, hence,
bypass the READ_HISTORY_BOOKMARKS permission.

Furthermore, the second category seems to be more
dangerous in the context of smartphones as new features
are added frequently and new software interfaces allow to
access an unlimited number of unprotected resources. Even
developers taking care of secure implementations in the
sense of unintended information leaks, e.g., by providing
constant-time crypto implementations, and taking care of
possible software vulnerabilities like buffer overflow attacks,
inevitably leak sensitive information due to shared resources,
the OS, or the Android API. Additionally, the provided soft-
ware interfaces to access information and shared resources
allow for so-called software-only attacks, i.e., side-channel
attacks that only require the execution of malicious software.
This clearly represents an immense threat as these attacks
(1) do not exploit any obvious software vulnerabilities, (2)
do not rely on specific privileges or permissions, and (3) can
be conducted remotely via malicious apps or even websites.

2.3. Software-only Side-Channel Attacks

As previously mentioned, side-channel attacks either
exploit physical properties or logical properties (software
features). Irrespective of whether a physical property (e.g.,
execution time [6] and power consumption [14]) or a
software feature (e.g., memory footprint available via the
procfs [25] and data-usage statistics [15], [26]) are exploited,
smartphones allow many of these side-channel information
leaks to be exploited by means of software-only attacks.
More specifically, software-only attacks allow to exploit
leaking information without additional equipment that was
required for traditional side-channel attacks. For example, an
oscilloscope is necessary to measure the power consumption
of a smartcard during its execution, or an EM probe is

1. In the literature some of the information leaks through the procfs are
also denoted as storage side channels [24].

2. For example, the data-usage statistics, i.e., the amount of incoming
and outgoing network traffic, is publicly available for all applications.

necessary to measure the EM emanation. In contrast, today’s
smartphones allow an impressive number of side-channel
leaks to be exploited via software-only attacks. Besides,
an attack scenario that requires the user to install an (un-
privileged) application—i.e., an addictive game—is entirely
reasonable in an appified ecosystem.

For the generic class of side-channel attacks, it does
not matter whether the leaking information is collected via
dedicated equipment or whether an unprivileged app collects
the leaking information directly on the device under attack
(software-only attacks). Interestingly, however, the immense
amount of information published on purpose allows to ob-
serve physical properties of the device as well as physical
interactions with the device. Consequently, software-only
side channel attacks have gained increasing attention in
the last few years and impressive attacks are continuously
published by the scientific community.
Runtime-Information Gathering Attacks. Zhang et
al. [17] coined the term runtime-information gathering (RIG)
attack, which refers to attacks that require a malicious app
to run side-by-side with a victim app on the same device
in order to collect runtime information of the victim. This
generic class of attacks also includes a subset of side-
channel attacks, especially side-channel attacks that can be
launched via software-only attacks. However, RIG attacks
also include attacks that we do not consider as side-channel
attacks. For example, RIG attacks also include attacks where
apps request permissions which are exploited for (more
obvious) attacks, e.g., requesting the RECORD_AUDIO per-
mission in order to eavesdrop on phone conversations.

Screenmilker [27]—an attack exploiting ADB capabili-
ties to take screenshots programmatically—is also consid-
ered being a RIG attack. We do not consider such attacks
as side-channel attacks because these attacks exploit im-
plementation flaws, i.e., the exploited screenshot tool does
not implement any authentication mechanism and hence
any application can take screenshots programmatically. Sim-
ilarly, we do not consider buffer overflow attacks as a
means to launch active side-channel attacks because buffer
overflow attacks represent a software vulnerability. Side-
channel attacks, however, attack targets that are secure from
a software perspective and still leak information uninten-
tionally. Furthermore, software vulnerabilities, e.g., missing
authentication mechanisms and buffer overflow attacks, can
be fixed easily, whereas side-channel attacks usually cannot
be fixed or prevented that easily.

Figure 4 illustrates the new type of software-only side-
channel attacks that allow to exploit both, physical proper-
ties as well as software features (logical properties), without
additional equipment. Hence, software-only attacks allow
for large-scale attacks against an immense number of smart-
phone users at the same time. As software-only attacks
also rely on software being executed side-by-side with the
victim application, software-only attacks are a sub-category
of RIG attacks. It should be noted that physical attacks
on smartphones might still rely on dedicated hardware and
also some logical attacks can also be conducted without
running software on the device under attack. Such attacks

4



RIG
attacks

(HW)
Physical
attacks

(SW)
Logical
attacks

SW-only side-channel attacks

Figure 4. Relations between different types of attacks. SW-only side-
channel attacks allow to exploit physical as well as logical properties.

are covered by the non-overlapping areas of “(HW) physical
attacks” and “(SW) logical attacks” in Figure 4. However,
physical attacks that cannot be conducted by running soft-
ware on the targeted device are more targeted attacks as they
require attackers to be in physical presence of the device.

2.4. Adversary Model and Attack Scenario

In contrast to traditional attacks that require the attacker
to have the device under physical control or to be physically
present with the targeted victim, the adversary model for
most (existing) side-channel attacks on smartphones shifted
the scope to remote software execution by means of apps or
websites. This also dramatically increases the scale of these
attacks. While traditional side-channel attacks targeted only
a few devices, modern side-channel attacks target possibly
millions of devices or users at the same time. With this
general overview of the adversary model in mind, most
software-only attacks usually consider the following two-
phase attack scenario:
Training phase: In the training phase, the attacker “pro-

files” specific actions or events of interest, either during
an online phase on the attacked device or during an
offline phase in dedicated environments. Sometimes
this training phase includes the establishment of a
machine-learning model, e.g., a supervised classifier.
More abstractly, the attacker builds specific “templates”
based on dedicated events of interest. In addition, the
attacker crafts an app (or website) that ideally does not
require any permissions or privileges in order to avoid
raising the user’s suspicion. This app is used in the
attack phase to gather leaking information.

Attack phase: The attack phase usually consists of three
steps. (1) A malicious application—that is hidden in-
side a popular app—is spread via existing app markets.
After installation, this malicious app waits in the back-
ground until the targeted app/action/event starts and
then (2) it observes the leaking side-channel informa-
tion. Based on the gathered information, (3) it employs
the previously established model or templates to infer
secret information. Depending on the complexity of
the inference mechanism, e.g., the complexity of the
machine-learning classifier, the gathered side-channel
information could alternatively be sent to a remote
server, which then performs the heavy computations
to infer the secret information.

3. A New Categorization System

Our new categorization system, depicted in Figure 5,
classifies side-channel attacks along three axes:

1) Passive vs active: This category distinguishes between
attackers that passively observe leaking side-channel
information and attackers that also actively influence
the target via any side-channel vector. For instance,
an attacker can manipulate the target, its input, or its
environment via any side-channel vector in order to
subsequently observe leaking information via abnormal
behavior of the target (cf. [4]). However, for both cases,
we always assume a correct implementation without
any obvious software vulnerabilities like, e.g., buffer
overflow vulnerabilities.

2) Physical properties vs logical properties: This cate-
gory classifies side-channel attacks according to the
exploited information, i.e., depending on whether the
attack exploits physical properties (hardware) or logical
properties (software features). Some attacks that exploit
software features also refer to such attacks as stor-
age side-channels (cf. [24]). However, not all attacks
exploiting software features target information that is
actually stored somewhere.

3) Local attackers vs vicinity attackers vs remote attack-
ers: Side-channel attacks are classified depending on
whether or not the attacker must be in physical prox-
imity/vicinity of the target. Local attackers clearly must
be in (temporary) possession of the device or at least in
close proximity. Vicinity attackers are able to wiretap or
eavesdrop the network communication of the target or
to be somewhere in the vicinity of the target. Remote
attackers only rely on software execution on the tar-
geted device. Clearly, the scale increases significantly
for these three attackers as a local attacker relies on
stronger assumptions than a remote attacker. Especially
the immense number of software-only attacks (that
allow to conduct side-channel attacks remotely) stress
the need for this category.

Figure 5 illustrates our new categorization system. We
distinguish between active and passive attackers along the
(right) y-axis. Passive attacks are classified above the x-
axis and active attacks are classified below the x-axis. The
(left) y-axis distinguishes the exploited side-channel vector,
i.e., physical properties and logical properties. As both of
these categories can be exploited by passive as well as active
attackers, these two categories are mirrored along the x-
axis. The x-axis categorizes side-channel attacks according
to the attacker’s proximity to the targeted device. For in-
stance, some attacks require an attacker to have access to
the targeted device or even to have access to components
within the device, e.g., the attacker might remove the back
cover in order to measure the EM emanation of the chip.
Stronger adversaries (with weaker assumptions) might rely
on wiretapping techniques. The strongest adversaries only
rely on unprivileged applications being executed on the
targeted device or even only that the victim browses a
malicious website.

5



Local Vicinity Remote

Physical
Properties

(HW)

Logical
Properties

(SW)

Logical
Properties

(SW)

Physical
Properties

(HW)

ATTACKER

S
ID

E
-C

H
A

N
N

E
L

V
E

C
T

O
R

A
ct

iv
e

Pa
ss

iv
e

M
O

D
E

O
F

A
T

TA
C

K

Figure 5. Overview of our proposed classification system for side-channel
attacks: (1) active vs passive, (2) logical properties vs physical properties,
(3) local attackers vs vicinity attackers vs remote attackers.

Subsequently, we briefly survey existing attacks accord-
ing to our new classification system. We start with passive
attacks and classify these attacks along the attacker’s vicinity
to the target in Section 4. In addition to passive attacks we
also survey active attacks in Section 5. Hence, the following
sections provide an extensive survey of existing attacks.

4. Passive Attacks

Passive attacks only observe leaking information without
actively influencing or manipulating the target.

4.1. Local Side-Channel Attacks

Below we survey side-channel attacks that require a local
adversary. We start with traditional side-channel attacks
that aim to break insecure cryptographic implementations
(of mathematically secure primitives). Besides, we discuss
attacks that target the user’s interaction with the device as
well as the user’s input on the touchscreen, i.e., attacks that
result from the inherent nature of mobile devices.

Power Analysis Attacks. The actual power consumption of
a device or implementation depends on the processed data
and executed instructions. Power analysis attacks exploit this
information leak to infer sensitive information.

Attacks. Traditional side-channel attacks exploiting the
power consumption of smartcards [4] have also been applied
on mobile devices. For instance, attacks targeting symmetric
cryptographic primitives [28] as well as asymmetric primi-
tives [29]–[31] have been successfully demonstrated. Such
attacks have even been conducted with low-cost equipment,
as has been impressively demonstrated by Genkin et al. [29].
Furthermore, the power consumption of smartphones allows
to identify running applications [32].

Electromagnetic Analysis Attacks. Another way to attack
the leaking power consumption of computing devices is to
exploit electromagnetic emanations.

Attacks. Gebotys et al. [33] demonstrated attacks on
software implementations of AES and ECC on Java-based
PDAs. Later on, Nakano et al. [34] attacked ECC and RSA
implementations of the default crypto provider (JCE) on
Android smartphones and Belgarric et al. [31] attacked the
ECDSA implementation of Android’s Bouncy Castle.

Smudge Attacks. The most common input method on
mobile devices is the touchscreen, i.e., users tap and swipe
on the screen with their fingers. However, due to the inherent
nature of touchscreens, users always leave residues in the
form of fingerprints and smudges on the screen.

Attacks. Aviv et al. [35] pointed out that side-channel
attacks can be launched due to specific interactions with
the smartphone or touchscreen-based devices in general.
More specifically, forensic investigations of smudges (oily
residues from the user’s fingers) on the touchscreen allow
to infer unlock patterns. Even after cleaning the phone or
placing the phone into the pocket, smudges seem to remain
most of the time. Hence, smudges are quite persistent which
increases the threat of smudge attacks. Follow-up work
considering an attacker who employs fingerprint powder to
infer keypad inputs has been presented by Zhang et al. [36]
and also an investigation of the heat traces left on the screen
by means of thermal cameras has been performed [37].

Shoulder Surfing and Reflections. Touchscreens of mobile
devices optically/visually emanate the displayed content.
Often these visual emanations are reflected by objects in
the environment, e.g., sunglasses, tea pots, etc. [38], [39].

Attacks. Maggi et al. [40] observed that touchscreen
input can be recovered by observing the visual feedback
(pop-up characters) on soft keyboards during the user input.
Raguram et al. [41], [42] observed that reflections, e.g.,
on the user’s sunglasses, can also be used to recover input
typed on touchscreens. However, the attacker needs to point
the camera, used to capture the reflections, directly on the
targeted user. Subsequently, they rely on computer vision
techniques and machine learning techniques to infer the user
input from the captured video stream. Xu et al. [43] extended
the range of reflection-based attacks by considering reflec-
tions of reflections. Although, they do not rely on the visual
feedback of the soft keyboard but instead track the user’s
fingers on the smartphone while interacting with the device.

Hand/Device Movements. Many input methods on various
devices rely on the user operating the device with her hands
and fingers. For instance, users tend to hold the device in
their hands while operating it with their fingers.

Attacks. Similar to reflections, Shukla et al. [44] pro-
posed to monitor hand movements as well as finger
movements—without directly pointing the camera at the tar-
geted screen—in order to infer entered PIN inputs. Similarly,
Sun et al. [45] monitored the backside of tablets during
user input and detected subtle motions that can be used to
infer keystrokes. Yue et al. [46] proposed an attack where
the input on touch-enabled devices can be estimated from a
video of a victim tapping on a touch screen.

6



4.2. Vicinity Side-Channel Attacks

In this section, we briefly recall attacks that require the
attacker to be in the vicinity of the targeted user/device.
For example, the attacker compromises any infrastructure
facility within the user’s environment.

Network Traffic Analysis. In general, the encryption of
messages transmitted between two parties only hides the
actual content, while specific meta data like, e.g., the overall
amount of data, is not protected. This observation can be
used to infer sensitive information about the transmitted
content and about the communicating parties.

Attacks. Network traffic analysis has been extensively
studied in the context of website fingerprinting attacks.
These attacks [47]–[51] aim to infer visited websites by
wiretapping network connections in order to observe traffic
signatures, e.g., unique packet lengths, inter-packet timings,
etc., and even work in case the traffic is routed through Tor.

While most website fingerprinting attacks target the
network communication in general, attacks explicitly tar-
geting mobile devices also exist. For instance, Stöber et
al. [52] assumed that an adversary can eavesdrop on the
UMTS transmission and showed that smartphones can be
fingerprinted according to the background traffic generated
by installed apps. Conti et al. [53] consider an adversary who
controls WiFi access points near the targeted device and,
thereby, infer specific app actions like sending mails, posting
Facebook status messages, etc. In a similar setting, many
papers demonstrated the feasibility to fingerprint specific
apps and actions performed in specific apps based on traffic
analysis techniques (cf. [54]–[59]).

While the above presented attacks exploit logical prop-
erties, i.e., the fact that encrypted packets do not hide meta
data, a recent work by Schulz et al. [60] showed that
also hardware properties can be exploited. Therefore, they
exploit the electromagnetic emanation of Ethernet cables to
eavesdrop on transmitted packets on the wire.

User Identification. The identification (or localization)
of specific users within specific areas or environments is
considered a privacy risk.

Attacks. Conti et al. [61] demonstrated that wall-socket
smart meters that capture the power consumption of plugged
devices can be used to identify specific users/notebooks.
Although Conti et al. demonstrated the power of their attack
by using notebooks, it is likely that the same attack works
for smartphones as well.

WiFi Signal Monitoring. WiFi devices continuously moni-
tor the wireless channel (channel state information (CSI)) to
effectively transmit data. This is necessary as environmental
changes cause the CSI values to change.

Attacks. Ali et al. [62] observed that even finger mo-
tions impact wireless signals and cause unique patterns in
the time-series of CSI values. In a setting with a sender
(notebook) and a receiver (WiFi router), they showed that
keystrokes on an external keyboard cause distortions in the

WiFi signal. By monitoring how the CSI values change, they
are able to infer the entered keys. Later on, Zhang et al. [63]
inferred unlock patterns on smartphones via a notebook
that is connected to the wireless hotspot provided by the
smartphone. Li et al. [64] further improved these attacks by
considering an attacker controlling only a WiFi access point.
They infer the PIN input on smartphones and also analyze
network packets to determine when the sensitive input starts.

4.3. Remote Side-Channel Attacks

The attacks presented in this section can be categorized
as software-only attacks. In contrast to the local side-channel
attacks as well as the vicinity side-channel attacks presented
in the previous sections, these attacks neither require the
attacker to be in the proximity nor in the vicinity of the
targeted user. Hence, these attacks can be executed remotely
and target a much larger scale.

Linux-inherited procfs Leaks. The Linux kernel releases
“accounting” information that is considered as being harm-
less via the procfs. This includes, for example, the memory
footprint (total virtual memory size and total physical mem-
ory size) of each application via /proc/[pid]/statm,
CPU utilization times via /proc/[pid]/stat, num-
ber of context switches via /proc/[pid]/status,
but also system-wide information like interrupt coun-
ters via /proc/interrupts and context switches via
/proc/stat.

Attacks. Jana and Shmatikov [25] observed that the
memory footprint of the browser correlates with the ren-
dered website. Thus, by monitoring the memory footprint
they can infer a user’s browsing behavior (browser history),
which represents sensitive information and is normally pro-
tected via the READ_HISTORY_BOOKMARKS permission.
Later on, Chen et al. [65] exploited this information to detect
Activity transitions within Android apps. They observed
that the shared memory size increases by the size of the
graphics buffer in both processes, i.e., the app process and
in the window compositor process (SurfaceFlinger). These
increases occur due to the IPC communication between the
app and the window manager. Besides, they also consider
CPU utilization and network activity in order to infer the
exact activity later on.

Similar to the memory footprint of applications, the
procfs also provides system-wide information about the
number of interrupts and context switches. Again, this in-
formation is considered as being innocuous and is, thus,
published on purpose. Simon et al. [12] exploited this
information to infer text entered via swipe input methods.
Diao et al. [66] presented two attacks to infer unlock patterns
and the app running in the foreground. The information
leaks exploited were gathered from interrupt time series
for the device’s touchscreen controller. Besides, also the
power consumption is released via the procfs. Yan et al. [32]
have shown that the power consumption allows to infer the
number of entered characters on the soft keyboard.

7



Data-Usage Statistics. Android keeps track of the amount
of incoming and outgoing network traffic on a per-
application basis. These statistics allow users to keep an
eye on the data consumption of any app and can be accessed
without any permission.

Attacks. Data-usage statistics are captured with a fine-
grained granularity, i.e., packet lengths of single TCP pack-
ets can be observed, and have already been successfully
exploited. Zhou et al. [15] demonstrated that by monitoring
the data-usage statistics an adversary can infer sensitive
information of specific apps. They were able to infer disease
conditions accessed via WebMD, the financial portfolio via
Yahoo! Finance, and also a user’s identity by observing the
data-usage statistics of the Twitter app and exploiting the
publicly available Twitter API. Later, it has been shown that
the data-usage statistics can also be employed to fingerprint
websites [26] even though the traffic is routed through the
anonymity network Tor.

Page Deduplication. To reduce the overall memory foot-
print of a system, (some) operating systems3 search for iden-
tical pages within the physical memory and merge them—
even across different processes—which is called page dedu-
plication. As soon as one process intends to write onto such
a deduplicated page, a copy-on-write fault occurs and the
process gets its own copy of this memory region again.

Attacks. Such copy-on-write faults have been exploited
by Suzaki et al. [67] and recently Gruss et al. [68] demon-
strated the possibility to measure the timing differences
between normal write accesses and copy-on-write faults
from within JavaScript code. Based on these precise timings
they suggest to fingerprint visited websites by allocating
memory that stores images found on popular websites. If
the user browses the website with the corresponding image,
then at some point the OS detects the identical content in
the pages and deduplicates these pages. By continuously
writing to the allocated memory, the attacker might observe
a copy-on-write fault in which case the attacker knows that
the user currently browses the corresponding website.

Cache Attacks. CPU caches represent an important com-
ponent within the memory hierarchy of modern computer
architectures. Multiple cache levels bridge the gap between
the latency of main memory accesses and the fast CPU clock
frequencies. However, by measuring execution times and
memory accesses, an attacker can infer sensitive information
from processes running in parallel on the same device [1].

Attacks. Cache-timing attacks against the AES have
already been investigated on Android-based mobile devices.
For instance, Bernstein’s cache-timing attack [69] has been
launched on development boards [70]–[72] and on Android
smartphones [73], [74]. Besides, similar cache attacks have
been launched on embedded devices [75] and more fine-
grained attacks [5] against the AES have also been applied
on smartphones [76]. These attacks relied on privileged

3. For instance, the Android-based CyanogenMod OS allows to enable
page deduplication.

access to precise timing measurements, but as stated by
Oren et al. [77] cache attacks can also be exploited via
JavaScript and, thus, do not require native code execu-
tion anymore. They even demonstrated the possibility to
track user behavior including mouse movements as well
as browsed websites via JavaScript-based cache attacks. A
recent paper by Lipp et al. [78] even constitutes that all
existing cache attacks, including the effective Flush+Reload
attack [6], can be applied on modern Android-based smart-
phones without any privileges. While early attacks on smart-
phones exclusively targeted cryptographic implementations,
their work also shows that user interactions (touch actions
and swipe actions) can be inferred through this side channel.
Similar investigations of Flush+Reload on ARM have also
been conducted by Zhang et al. [79].

Sensor-based Keyloggers. Cai et al. [80] and Raij et
al. [81] were one of the first to discuss possible privacy
implications resulting from mobile devices equipped with
cameras, microphones, GPS sensors, and motion sensors in
general. Nevertheless, a category of attacks that received
the most attention are sensor-based keyloggers. These at-
tacks are based on two observations. First, smartphones
are equipped with lots of sensors—both motion sensors
as well as ambient sensors—that can be accessed without
any permission, and second, these devices are operated
with fingers while being held in the users’ hands. Hence,
the following attacks are all based on the observation that
users tap/touch/swipe the touchscreen and that the device is
slightly tilt and turned during the operation.

Attacks. In 2011, Cai and Chen [10] first investigated
motion-based keylogging of single digits by exploiting the
accelerometer sensor. Following this work, Owusu et al. [82]
extended the attack to infer single characters and Aviv [11],
[83] investigated the accelerometer to attack PIN and pattern
inputs. Subsequent publications [84]–[86] also considered
the combination of the accelerometer and the gyroscope in
order to improve the performance as well as to infer even
longer text inputs [87].

Since the W3C specifications allow access to the motion
and orientation sensors from JavaScript, motion-based key-
logging attacks have even been successfully demonstrated
via websites [13], [88]. Even worse, some browsers continue
to execute JavaScript code, although the user closed the
browser or turned off the screen.

While the above summarized attacks exploit different
types of motion sensors, e.g., accelerometer and gyroscope,
keylogging attacks can also be employed by exploiting
ambient sensors. Spreitzer [89] currently presented the only
attack that exploits an ambient sensor, namely the ambient-
light sensor, in order to infer a user’s PIN input on touch-
screens.

As demonstrated by Simon and Anderson [90], PIN
inputs on smartphones can also be inferred by continuously
taking pictures via the front camera. Afterwards, PIN digits
can be inferred by image analysis and by investigating
the relative changes of objects in subsequent pictures that
correlate with the entered digits. Fiebig et al. [91] demon-

8



strated that the front camera can also be used to capture the
screen reflections in the user’s eyeballs, which also allows
to infer user input. In a similar manner, Narain et al. [92]
and Gupta et al. [93] showed that tap sounds (inaudible to
the human ear) recorded via smartphone stereo-microphones
can be used to infer typed text on the touchscreen. However,
these attacks require the CAMERA and RECORD_AUDIO
permission which might raise the user’s suspicion during
the installation. In contrast, the above presented motion and
ambient sensors can be accessed without any permission.

For a more complete overview of sensor-based keylog-
ging attacks we refer to the recently published survey papers
by Hussain et al. [94] and Nahapetian [95]. Considering the
significant number of papers that have been published in
this context, user awareness about such attacks should be
raised. Especially since a recent study by Mehrnezhad et
al. [88] found that the perceived risk of motion sensors, and
especially ambient sensors, among users is very low.

Fingerprinting Devices/Users. The identification of smart-
phones (and users) without a user’s awareness is considered
a privacy risk. While obvious identification mechanisms like
device IDs and web cookies can be thwarted, hardware im-
perfections of hardware components, e.g., sensors, as well as
specific software features can also be employed to stealthily
fingerprint and identify devices and users, respectively.

Attacks. Bojinov et al. [96] and Dey et al. [97] observed
that unique variations of sensor readings (e.g., accelerom-
eter) can be used to fingerprint devices. These variations
are a result of the manufacturing process and are persistent
throughout the life of the sensor/device. As these sensors can
also be accessed via JavaScript, it is possible to fingerprint
devices via websites [98]. Similarly, such imperfections also
affect the microphones and speakers [99], [100], which also
allow to fingerprint devices. In addition, by combining mul-
tiple sensors even higher accuracies can be achieved [101].

Kurtz et al. [102] demonstrated that users can also be
identified by fingerprinting mobile device configurations,
e.g., device names, language settings, installed apps, etc.
Hence, their fingerprinting approach exploits software prop-
erties (i.e., configurations) only. Hupperich et al. [103] pro-
posed to combine hardware as well as software features to
fingerprint mobile devices.

Location Inference. As smartphones are always carried
around, information about a phone’s location inevitably
reveals the user’s location/position. Hence, resources that
obviously can be used to determine a user’s location, e.g.,
the GPS sensor, are considered as privacy relevant and,
thus, require a dedicated permission. Yet, even without per-
missions, side-channel attacks can be used to infer precise
location information.

Attacks. Han et al. [104], Nawaz et al. [105], and
Narain et al. [106] demonstrated that the accelerometer
and the gyroscope can be used to infer car driving routes.
Similarly, Hemminki et al. [107] showed that the trans-
portation mode, e.g., train, bus, metro, etc., can be inferred
via the accelerometer readings of smartphones. Besides the

accelerometer and the gyroscope also ambient sensors can
be used to infer driving routes. Ho et al. [108] exploit the
correlation between sensor readings of the barometer sensor
and the geographic elevation to infer driving routes.

Even less obvious side-channels that allow to infer driv-
ing routes and locations are the speaker status information
(e.g., speaker on/off) and the power consumption (available
via the procfs). More specifically, Zhou et al. [15] observed
that the Android API allows to query whether or not the
speaker is currently active, i.e., boolean information that
indicates whether or not any app is playing sound on the
speakers. They exploit this information to attack the turn-by-
turn voice guidance of navigation systems. By continuously
querying this API, they can determine how long the speaker
is active. This information allows them to infer the speech
length of voice direction elements, e.g., the length of “Turn
right onto East Main Street”. As driving routes consist
of many such turn-by-turn voice guidances, they use this
information to fingerprint driving routes. Michalevsky et
al. [14] showed that the observed power consumption (via
the procfs) is related to the strength of the cellular signal,
which depends on the distance to the base station. Given
this information they are able to infer a user’s location.

Speech Recognition. Eavesdropping conversations repre-
sents a privacy threat. Thus, the RECORD_AUDIO permis-
sion protects access to the microphone. However, acoustic
signals also influence the gyroscope measurements.

Attacks. Michalevsky et al. [109] exploited the gyro-
scope sensor to measure acoustic signals in the vicinity of
the phone and to recover speech information. Although they
only consider a small set of vocabulary, i.e., digits only, their
work demonstrates the immense power of gyroscope sensors
in today’s smartphones. By exploiting the gyroscope sensor
they are able to bypass the RECORD_AUDIO permission.

Soundcomber. Interactive voice response systems sup-
ported by telephone services use dual-tone multi-frequency
(DTMF) signaling to transmit entered numbers, i.e., an audio
signal is transmitted for each key.

Attacks. As DTMF tones are also played locally,
Schlegel et al. [110] showed that by requesting the
RECORD_AUDIO permission, these tones can be recorded
and used to infer sensitive input like credit card numbers.

5. Active Attacks

Besides passively observing leaking information, an ac-
tive attacker can also manipulate the target, its input, or
its environment in order to subsequently observe leaking
information via abnormal behavior of the target (cf. [4]).

5.1. Local Side-Channel Attacks

Most active attacks that require the attacker to be physi-
cally present with the attacked device have been investigated
in the smartcard setting. Only few of these attacks are
investigated on larger systems like smartphones.

9



Clock/Power Glitching. Variations of the clock signal,
e.g., overclocking, have been shown to be an effective
method for fault injection on embedded devices in the
past. One prerequisite for this attack is an external clock
source. Microcontrollers applied in smartphones typically
have an internal clock generator making clock tampering
impossible. Besides clock tampering, intended variations of
the power supply represent an additional method for fault
injection. With minor hardware modifications, power-supply
tampering can be applied on most microcontroller platforms.

Attacks. In [111] it is shown how to disturb the program
execution of an ARM CPU on a Raspberry PI by underpow-
ering, i.e., the supply voltage is set to GND for a short time.
Tobich et al. [112] take advantage of the so-called forward
body bias injection for inducing a fault during a RSA-CRT
calculation. Due to the relatively easy application on modern
microcontrollers, voltage-glitching attacks pose a serious
threat for smartphones if attackers have physical access to
the device. This has been demonstrated by O’Flynn [113]
for an off-the-shelf Android smartphone.

Electromagnetic Fault Injection (EMFI). Transistors
placed on microchips can be influenced by electromag-
netic emanation. EMFI attacks take advantage of this fact.
These attacks use short (in the range of nanoseconds), high-
energy EM pulses to, e.g., change the state of memory cells
resulting in erroneous calculations. In contrast to voltage
glitching, where the injected fault is typically global, EMFI
allows to target specific regions of a microchip by precisely
placing the EM probe, e.g., on the instruction memory,
the data memory, or CPU registers. Compared to optical
fault injection, EMFI attacks do not necessarily require a
decapsulation of the chip making them more practical.

Attacks. Ordas et al. [114] report successful EMFI at-
tacks targeting the AES hardware module of a 32 bit ARM
processor. Rivière et al. [115] use EMFI attacks to force
instruction skips and instruction replacements on modern
ARM microcontollers. Considering the fact that ARM pro-
cessors are applied in modern smartphones, EMFI attacks
represent a serious threat for such devices.

Laser/Optical Faults. Optical fault attacks using a laser
beam are among the most-effective fault-injection tech-
niques. These attacks take advantage of the fact that a
focused laser beam can change the state of a transistor
on a microcontroller resulting in, e.g., bit flips in memory
cells. Compared to other fault-injection techniques (voltage
glitching, EMFI), the effort for optical fault injection is high.
(1) Decapsulation of the chip is a prerequisite in order to
access the silicone with the laser beam. Besides, (2) finding
the correct location for the laser beam to produce exploitable
faults is also not a trivial task.

Attacks. First optical fault-injection attacks targeting an
8-bit microcontroller have been published by Skorobogatov
and Anderson [116] in 2002. Inspired by their work, several
optical fault-injection attacks have been published in the
following years, most of them targeting smartcards or low-

resource embedded devices (e.g. [117], [118]). The increas-
ing number of metal layers on top of the silicone, decreasing
feature size (small process technology), and the high decap-
sulation effort make optical fault injection difficult to apply
on modern microprocessors used in smartphones.

NAND Mirroring. Data mirroring refers to the replication
of data storage between different locations. Such techniques
are used to recover critical data after disasters but also allow
to restore a previous system state.

Attacks. The Apple iPhone protects a user’s privacy by
encrypting the data. Therefore, a passcode and a hardware-
based key are used to derive various keys that can be used
to protect the data on the device. As a dedicated hardware-
based key is used to derive these keys, brute-force attempts
must be done on the attacked device. Furthermore, brute-
force attempts are discouraged by gradually increasing the
waiting time between wrongly entered passcodes up to the
point where the phone is wiped. In response to the Apple
vs FBI case, Skorobogatov [119] demonstrated that NAND
mirroring can be used to reset the phone state and, thus, can
be used to brute-force the passcode. Clearly, this approach
also represents an active attack as the attacker actively
influences (resets) the state of the device.

Temperature Variation. Operating a device outside of its
specified temperature range allows to cause faulty behavior.
Heating up a device above the maximum specified temper-
ature can cause faults in memory cells. Cooling down the
device has an effect on the speed RAM content fades away
after power off (remanence effect of RAM).

Attacks. Hutter and Schmidt [120] present heating
fault attacks targeting an AVR microcontroller. They prove
the practicability of this approach by successfully attack-
ing an RSA implementation on named microcontroller.
FROST [121], on the other hand, is a tool for recovering disc
encryption keys from RAM on Android devices by means
of cold-boot attacks. Here the authors take advantage of the
increased time data in RAM remains valid after power off
due to low temperature.

5.2. Vicinity Side-Channel Attacks

Besides passively observing leaking information, vicin-
ity attacks can be improved by considering active attackers
as demonstrated by the following example.

Network Traffic Analysis. Network traffic analysis has
already been discussed in the context of passive side-channel
attacks in Section 4. However, active attackers might learn
additional information by actively influencing the transmit-
ted packets, e.g., by delaying packets.

Attacks. He et al. [122] demonstrated that an active
attacker, e.g., represented by ISPs, could delay HTTP re-
quests from Tor users in order to increase the performance
of website fingerprinting attacks.

10



5.3. Remote Side-Channel Attacks

An area of research that gains increasing attention
among the scientific community are software-induced faults.

Rowhammer. The increasing density of memory cells
requires the size of these cells to decrease, which in turn
decreases the charging of single cells but also causes elec-
tromagnetic coupling effects between cells.

Attacks. Kim et al. [123] demonstrated that these obser-
vations can be used to induce hardware faults, i.e., bit flips in
neighboring cells, via frequent memory accesses to the main
memory. Later, Seaborn and Dullien [124] demonstrated
how to possibly exploit these bit flips from native code and
Gruss et al. [125] showed that such bit flips can even be
induced via JavaScript code. A recent paper [126] success-
fully demonstrates the exploitation of the Rowhammer bug
to gain root privileges on Android smartphones by inducing
bit flips from an unprivileged application.

6. Discussion of Countermeasures
In this section, we discuss existing countermeasures

against the most prominent attacks. Overall we aim to shed
light onto possible pitfalls of existing countermeasures and
to stimulate future research to come up with more generic
countermeasures against side-channel attacks.

6.1. Local Side-Channel Attacks

Protecting Cryptographic Implementations. Counter-
measures from the smartcard world can be applied to pro-
tect cryptographic implementations on smartphones as well.
Masking of sensitive values or execution randomization are
countermeasures for hardening the implementation against
passive attacks like power analysis or EM analysis [4].
Executing critical calculations twice allows to detect faults
that are injected during an active side-channel attack [127].

Protecting User Input. Mitigation techniques to prevent
attackers from inferring user input on touchscreens are
not that thoroughly investigated yet. Nevertheless, proposed
countermeasures include, for example, randomly starting
the vibrator to prevent attacks that monitor the backside
of the device [45], or to randomize the layout of the
soft keyboard each time the user provides input to prevent
smudge attacks [83] as well as attacks that monitor the hand
movement [44]. Aviv [83] also proposes to align PIN digits
in the middle of the screen and after each authentication
the user needs to swipe down across all digits in order
to hide smudges. Besides, Kwon and Na [128] introduce
a new authentication mechanism denoted as TinyLock that
should prevent smudge attacks against pattern unlock mech-
anisms. Krombholz et al. [129] proposed an authentication
mechanism for devices with pressure-sensitive screens that
should prevent smudge attacks and shoulder surfing attacks.
Raguram et al. [41], [42] suggest to decrease the screen
brightness, to disable visual feedback (e.g., pop-up charac-
ters) on soft keyboards, and to use anti-reflective coating in
eyeglasses to prevent attackers from exploiting reflections.

6.2. Vicinity Side-Channel Attacks

Preventing Network Traffic Analysis. Countermea-
sures to prevent attackers from applying traffic analysis
techniques on wiretapped network connections have been
extensively considered in the context of website fingerprint-
ing attacks. The main idea of these obfuscation techniques
is to hide information that allows attackers to uniquely iden-
tify, e.g., visited websites. Proposed countermeasures [130]–
[134], however, require the application as well as the remote
server to cooperate. Furthermore, it has already been pointed
out in [26] that these countermeasures add overhead in terms
of bandwidth and data consumption which might not be
acceptable in case of mobile devices with limited data plans.

6.3. Remote Side-Channel Attacks

Permissions. The most straight-forward approach al-
ways discussed as a viable means to prevent specific types of
side-channel attacks is to protect the exploited information
or resource by means of dedicated permissions. However,
studies [135] have shown that permission-based approaches
are not quite convincing. Some users do not understand the
exact meaning of specific permissions, and others do not
care about requested permissions. Acar et al. [16] even attest
that the Android permission system “has failed in practice”.
Despite these problems it seems to be nearly impossible to
add dedicated permissions for every exploited information.

Keyboard Layout Randomization. In order to prevent
sensor-based keylogging attacks it has been suggested to
randomize the keyboard layout of soft keyboards [82]. How-
ever, it remains an open question how this would affect
usability and, intuitively, in case of randomized QWERTY
keyboards it might make keyboard input nearly impossible.4

Limiting Access or Sampling Frequency. It has also
been suggested to disable access to sensor readings during
sensitive input or to reduce the sampling frequency of sen-
sors. This, however, would prevent applications that heavily
rely on sensor readings, e.g., pedometers.

Side-channel attacks like Soundcomber might be pre-
vented by AuDroid [136], which is an extension to the
SELinux reference monitor that has been integrated into
Android to control access to system audio resources. As
pointed out by the authors, there is no security mechanism
in place for the host OS to control access to a mobile de-
vice’s speakers, thus allowing untrusted apps to exploit this
communication channel. AuDroid enforces security policies
that prevent data in system apps and services from being
leaked to (or used by) untrusted parties.

Noise Injection. Randomly starting the phone vibrator
has been suggested [82] to prevent sensor-based keyloggers
that exploit the accelerometer sensor. However, Shrestha et
al. [137] showed that random vibrations do not provide
protection. As an alternative, Shrestha et al. proposed a tool
named Slogger that introduces noise into sensor readings

4. The Android-based CyanogenMod OS allows to enable such a feature
for PIN inputs optionally.

11



as soon as the soft keyboard is running. In order to do so,
Slogger relies on a tool that needs to be started via the
ADB shell (in order to be executed with ADB capabilities).
Slogger injects events into the files corresponding to the
accelerometer and the gyroscope located in /dev/input/,
which is why ADB privileges are required for this defense
mechanism. The authors even evaluated the effectiveness
of Slogger against two sensor-based keyloggers and found
that the accuracy of sensor-based keyloggers can be reduced
significantly. Das et al. [98] also suggest to add noise to
sensor readings in order to prevent device fingerprinting via
hardware imperfections of sensors. A more general approach
that targets the injection of noise into the information pro-
vided via the procfs has been proposed by Xiao et al. [24].

Preventing Microarchitectural Attacks. The inherent
nature of modern computer architectures allows for so-
phisticated attacks due to shared resources and especially
due to dedicated performance optimization techniques. A
famous and popular example is the memory hierarchy that
introduces significant performance gains but also allows for
microarchitectural attacks like cache attacks. Although spe-
cific cryptographic implementations can be protected against
such attacks, e.g., bit-sliced implementations or dedicated
hardware instructions can be used to protect AES imple-
mentations, generic countermeasures against cache attacks
represent a non-trivial challenge. However, we consider it of
utmost importance to spur further research in the context of
countermeasures, especially since cache attacks do not only
pose a risk for cryptographic algorithms, but also for other
sensitive information like keystroke logging [7], [78].

App Guardian. Most of the above presented counter-
measures aim to prevent very specific attacks only, but can-
not be applied to prevent attacks within a specific category of
our classification system, e.g., software-only attacks located
in the upper right of our new classification system (cf.
Figure 5). At least some of these attacks, however, have
been addressed by App Guardian [17], which represents
a more general approach to defend against software-only
attacks. App Guardian is a third party application that runs in
user mode and basically employs side-channel information
to detect RIG attacks (including software-only side-channel
attacks). The basic idea of App Guardian is to stop the
malicious application while the principal (the app to be
protected) is being executed and to resume the (potentially
malicious) application later on. Although App Guardian still
faces challenges it is a novel idea to cope with such side-
channel attacks in general. More specifically, it tries to cope
with all passive attacks that require the attacker to execute
software on the targeted device (cf. Figure 5).

App Guardian seems to be a promising research project
to cope with side-channel attacks on smartphones at a larger
scale. However, an unsolved issue of App Guardian is the
problem that it still struggles with the proper identification
of applications to be protected. The effectiveness of App
Guardian should be further evaluated against existing side-
channel attacks and it might be interesting to extend it to
cope with side-channel attacks conducted from within the
browser, i.e., to mitigate side-channel attacks via JavaScript.

7. Classification and Trend Analysis

In Figure 6 we classify the attacks surveyed in Section 4
and Section 5 according to our new classification system.
Based on this classification system we observe specific
trends in modern side-channel attacks that will be discussed
within the following paragraphs. This trend analysis also
includes pointers for possible research directions.

From Local to Remote Attacks. The first trend that
can be observed is that, in contrast to the smartcard era, the
smartphone era faces a shift towards remote side-channel
attacks that focus on both hardware properties and software
features. The shift from local attacks (during the smartcard
era) towards remote attacks (on mobile devices) can be
addressed to the fact that the attack scenario as well as the
attacker have changed significantly. More specifically, side-
channel attacks against smartcards have been conducted to
reveal sensitive information that should be protected from
being accessed by benign users. For example, in case of pay-
TV cards the secret keys must be protected against benign
users, i.e., users who bought these pay-TV cards in the first
place. The attacker in this case might be willing to invest
in equipment in order to reveal the secret key as this key
could be sold later on. In contrast, today’s smartphones
are used to store and process sensitive information and
attackers interested in this information are usually not the
users themselves but rather criminals, imposters, and other
malicious entities that aim to steal this sensitive informa-
tion from users. Especially the appification of the mobile
ecosystem provides tremendous opportunities for attackers
to exploit identified side-channel leaks via software-only
attacks. Hence, this shift also significantly increases the
scale at which attacks are conducted. While local attacks
only target a few devices, remote attacks can be conducted
on millions of devices at the same time by distributing
software via available app markets.

From Active to Passive Attacks. The second trend
that can be observed is that fault injection attacks have
been quite popular on smartcards, whereas such (local) fault
attacks are not that widely investigated on smartphones, at
least at the moment. Consequently, we also observe that the
variety of fault attacks conducted in the smartcard era has
decreased significantly in the smartphone era, which can be
addressed to the following observations. First, the targeted
device itself, e.g., a smartphone, is far more expensive
than a smartcard and, hence, fault attacks that potentially
permanently break the device are only acceptable for very
targeted attacks. Even in case of highly targeted attacks
(cf. Apple vs FBI dispute) zero-day vulnerabilities might
be chosen instead of local fault attacks.5 Second, remote
fault attacks seem to be harder to conduct as such faults
are harder to induce via software execution. Currently, the
only remote fault attack (also known as software-induced
fault attack) is the Rowhammer attack, which however gets
increasing attention among the scientific community and

5. However, in September 2016 Skorobogatov [119] demonstrated that
NAND mirroring allows to bypass the PIN entry limit on the iPhone 5c.

12



Chip Device Wire/Communication Software Web

Ph
ys

ic
al

Pr
op

er
tie

s
(H

W
)

L
og

ic
al

Pr
op

er
tie

s
(S

W
)

L
og

ic
al

Pr
op

er
tie

s
(S

W
)

Ph
ys

ic
al

Pr
op

er
tie

s
(H

W
)

ATTACKER

S
ID

E
-C

H
A

N
N

E
L

V
E

C
T

O
R

Local RemoteVicinity

A
ct

iv
e

Pa
ss

iv
e

Smudges [35]

Reflections/hands [41]

EM analysis [33]
Power analysis [31]

EM analysis [60]

Sensor-based keyloggers [10]

Speech recognition [109]

Fingerprinting devices [97]

Soundcomber [110]

Location inference [104]

Cache attacks [78]

procfs leaks [25]
Page deduplication [68]

Fingerprinting devices [102]

Data-usage statistics [15]

Network traffic analysis [57]

User identification [61]

WiFi signal monitoring [63]

Laser/optical [116]

Clock/power glitch [113]

Temperature variation [120]

EMFI [114]

NAND mirroring [119]

Network traffic analysis [122]

Rowhammer [126] M
O

D
E

O
F

A
T

TA
C

K

Passive attacks
Active attacks

Scope of smartcard attacks
Scope of cloud attacks

Figure 6. Classification of side-channel attacks: (1) active vs passive, (2) logical properties vs physical properties, (3) local vs vicinity vs remote.

has already been impressively exploited to gain root access
on Android devices [126]. Although software-induced fault
attacks have not been investigated extensively in the past,
we expect further research to be conducted in this context.

Exploiting Physical and Logical Properties. In con-
trast to physical properties, logical properties (software
features) do not result from any physical interaction with
the device, but due to dedicated features provided via
software. While traditional side-channel attacks mostly ex-
ploited physical properties and required dedicated equip-
ment, more recent side-channel attacks exploit physical
properties as well as logical properties. Interestingly, the
immense number of sensors in smartphones also allows
to exploit physical properties by means of software-only
attacks, which was not possible on smartcards. Although the
majority of attacks on mobile devices still exploits physical

properties, the exploitation of logical properties also receives
increasing attention. Especially the procfs seems to provide
an almost inexhaustible source for possible information
leaks. For example, the memory footprint released via the
procfs has been used infer visited websites [25], or the
number of context switches has been used to infer swipe
input [12]. Besides, information that is available via official
APIs is in some cases also available via the procfs like, e.g.,
the data-usage statistics that have been exploited to infer a
user’s identity [15] and to infer visited websites [26].

Empty Areas. As can be observed, a few areas in this
categorization system are not (yet) covered. For instance,
there is currently no active side-channel attack that ex-
ploits logical properties (software features) to induce faults.
However, by considering existing passive attacks, one could
come up with more advanced attacks by introducing an

13



active attacker. Such an active attacker might, for exam-
ple, block/influence a shared resource in order to cause
malfunctioning of the target. For instance, considering the
passive attack exploiting the speaker status (on/off) to infer
a user’s driving routes [15], one could easily induce faults
by playing inaudible sounds in the right moment in order
to prevent the turn-by-turn voice guidance from accessing
the speaker. Thereby, the active attacker prevents the target
(victim) from accessing the shared resource, i.e., the speaker,
and based on these induced “faults” an active attacker might
gain an advantage compared to a passive attacker. We expect
advances in this (yet) uncovered area of active side-channel
attacks that target software features.

8. Issues, Challenges, and Future Research

In this section we discuss open issues and challenges
that need to be addressed in future research. Hence, this
section is not meant to provide solutions to existing prob-
lems. Instead, with the presented classification system for
modern side-channel attacks we aim to shed light onto this
vivid research area and, thereby, to point out high-level
research directions. Overall, the ultimate goal is to spur
further research in the context of side-channel attacks and
countermeasures and, as a result, to pave the way for a more
secure computing platform of smart and mobile devices.

Countermeasures. Side-channel attacks are published at
an unprecedented pace and appropriate defense mechanisms
are often either not (yet) available or cannot be deployed
easily. Especially the five key enablers identified in this
paper allow for devastating side-channel attacks that can be
conducted remotely and, thus, target an immense number
of devices and users at the same time. Although counter-
measures are being researched, we observe a cat and mouse
game between attackers and system engineers trying to make
systems secure from a side-channel perspective. Besides,
even if effective countermeasures were readily available,
the mobile ecosystem of Android would impede a large-
scale deployment of many of these defense mechanisms.
The main problem is that even in case Google would apply
defense mechanisms and patch these vulnerabilities, multi-
ple device manufacturers as well as carriers also need to
apply these patches to deploy countermeasures in practice.
Hence, chances are that such countermeasures will never
be deployed, especially not in case of outdated operating
systems. We hope to stimulate research to come up with
viable countermeasures in order to prevent such attacks
at a larger scale, i.e., by considering larger areas within
the new categorization system, while also considering the
challenges faced by the mobile ecosystem. For instance, App
Guardian [17] follows the right direction by trying to cope
with attacks at a larger scale, while at the same time it can
be deployed as a third-party application.

Reproducibility and Responsible Disclosure. In order
to foster research in the context of countermeasures, it would
be helpful to publish the corresponding frameworks used to
conduct side-channel attacks. While this might also address
the long-standing problem of reproducibility of experiments

in computer science in general, this would allow for a more
efficient evaluation of developed countermeasures. At the
same time, however, responsible disclosure must be upheld,
which sometimes turns out to be a difficult balancing act.
On the one hand, researchers want to publish their findings
as soon as possible and on the other hand, putting counter-
measures to practice might take some time.

Different Mobile Operating Systems and Cross-
Platform Development. Research should not only focus
on one particular OS exclusively, i.e., especially Android
seems to attract the most attention. Instead, the applicability
of side-channel attacks should be investigated on multiple
platforms as many (or most) of the existing attacks work
on other platforms as well. This is due to the fact that
different platforms and devices from different vendors aim
to provide the same features like, for example, sensors and
software interfaces, and rely on similar security concepts
like permission systems and application sandboxing.

In addition, the increasing trend to develop applica-
tions for multiple platforms (cross-platform development)
also increases the possibility to target multiple platforms
at the same time. For example, the increasing popularity
of HTML5 apps and the increasing availability of web
APIs to access native resources from JavaScript significantly
increases the scale of side-channel attacks as specific attacks
possibly target multiple platforms at the same time.

Wearables. Although we put a strong focus on smart-
phones in this paper, we stress that wearables in general
must be considered in future research. For example, smart-
watches have already been employed to attack user input on
POS terminals and hardware QWERTY keyboards [138]–
[141]. Besides, it has also been demonstrated that smart-
watches can be used to infer input on smartphones [142],
[143] as well as text written on whiteboards [144]. With the
ever increasing number of smart devices connected to our
everyday life, the threat of side-channel attacks increases.
We are likely to see higher accuracies when these attacks
are performed across multiple devices, e.g., when combin-
ing data from smartwatches and smartphones. Furthermore,
Farshteindiker et al. [145] also demonstrated how hardware
implants (bugs)—possibly used by intelligence agencies—
can be used to exfiltrate data by communicating with a
smartphone. The communication channel is based on in-
audible sounds emitted from the implant which are captured
by the gyroscope of the smartphone. This interconnection
clearly demonstrates the potential of attack vectors when
multiple wearable devices are combined.

Internet of Things. Another area of research which is
rapidly growing is the Internet of Things (IoT). As all de-
vices in the IoT network are inter-connected and accessible
via the Internet, we foresee that attackers will exploit side-
channel leaks to target different kinds of IoT appliances.
In fact such an attack has already been carried out by
Zhang et al. [17]. They investigated an Android-based WiFi
camera and observed that a particular side-channel leak on
Android smartphones can be exploited to infer whether or
not the user is at home. This example demonstrates that
side-channel leaks do not only pose a threat to a user’s

14



privacy and security from a system security point of view,
but also pose a threat to smart home appliances and security
systems like, e.g., smart thermostats, cameras, and alarm
systems. Although this sounds utopian at first, the above
example clearly demonstrates that side-channel leaks (on
smartphones) also pose a threat to these IoT appliances and
puts even users’ physical possessions at risk.

Combination of Multiple Information Leaks. In order
to improve the accuracy of existing attacks or to come
up with more sophisticated attack scenarios, multiple side-
channel leaks can also be combined. For instance, the com-
bination of cache attacks and sensor-based keyloggers as
mentioned in [78] could be used to improve keylogging
attacks. First, cache attacks can be used to determine the
exact time when a key is entered and, second, sensor-based
keyloggers can be used to infer the actual key. Further-
more, website fingerprinting attacks could be combined with
sensor-based keyloggers as mentioned in [26], which would
allow to steal login credentials for specific websites.

In addition, side-channel attacks can also be used to
improve attacks that exploit software vulnerabilities. For
example, although Screenmilker [27] does not represent
a side-channel attack—because a software vulnerability is
exploited—it relies on side-channel information in order to
exploit this vulnerability in the right moment. They suggest
to rely on CPU utilization, memory and network activities
in order to determine whether the targeted app is executed
and, thus, are able to take screenshots in the right moment.

Code Analysis Tools. The appification of mobile devices
allows for easy download of apps from the app markets.
However, these apps can be implemented by anyone who has
a developer account and, thus, the code needs to be checked
and verified appropriately, i.e., for presence of malicious
behavior and side-channel vectors. While the app vetting
processes of app stores, e.g., Google Play, already check
for presence of malware, dedicated technologies, such as
static and dynamic code analysis, should also be employed
in order to prevent apps prone to side-channel attacks and
apps exploiting side-channel information leaks from being
distributed via app markets. This, however, does not seem
to be a trivial task since most side-channel attacks exploit
information or resources that can be accessed without any
specific privileges or permissions.

Besides, static and dynamic code analysis tools could
help to fix delicate implementation flaws that lead to side-
channel attacks. For instance, some implementation flaws
exist for many years without being noticed as has been
demonstrated in [146] for the OpenSSL implementation of
the digital signature algorithm. Fostering the development
and application of tools to find and detect such flaws during
the software development process could help to prevent
vulnerable code from being deployed.

9. Conclusion

Considering the immense threat arising from side-
channel attacks on mobile devices, a thorough understanding
of information leaks and possible exploitation techniques is

necessary. Based on this open issue, we surveyed existing
side-channel attacks and identified commonalities of these
attacks in order to systematically categorize all existing
attacks. With the presented classification system we aim to
provide a thorough understanding of information leaks and
hope to spur further research in the context of side-channel
attacks as well as countermeasures and, thereby, to pave the
way for secure computing platforms.

Acknowledgment

The research leading to these results has received fund-
ing from the European Union’s Horizon 2020 research

and innovation
programme under
grant agreement No
644052 (HECTOR),
and the European
Research Council
(ERC) under the

European Union’s Horizon 2020 research and innovation
programme (grant agreement No 681402). Veelasha
Moonsamy has been supported by the Technology
Foundation STW (project 13499 - TYPHOON & ASPASIA)
from the Dutch government. Further, we would like to
thank Florian Mendel for helpful discussions about active
side-channel attacks.

References

[1] P. C. Kocher, “Timing Attacks on Implementations of Diffie-
Hellman, RSA, DSS, and Other Systems,” in Advances in Cryp-
tology – CRYPTO 1996, ser. LNCS, vol. 1109. Springer, 1996, pp.
104–113.

[2] P. C. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,”
in Advances in Cryptology – CRYPTO 1999, ser. LNCS, vol. 1666.
Springer, 1999, pp. 388–397.

[3] J. Quisquater and D. Samyde, “ElectroMagnetic Analysis (EMA):
Measures and Counter-Measures for Smart Cards,” in Smart Card
Programming and Security – E-smart 2001, ser. LNCS, vol. 2140.
Springer, 2001, pp. 200–210.

[4] S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks -
Revealing the Secrets of Smart Cards. Springer, 2007.

[5] E. Tromer, D. A. Osvik, and A. Shamir, “Efficient Cache Attacks
on AES, and Countermeasures,” J. Cryptology, vol. 23, pp. 37–71,
2010.

[6] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A High Resolution,
Low Noise, L3 Cache Side-Channel Attack,” in USENIX Security
Symposium 2014. USENIX Association, 2014, pp. 719–732.

[7] D. Gruss, R. Spreitzer, and S. Mangard, “Cache Template Attacks:
Automating Attacks on Inclusive Last-Level Caches,” in USENIX
Security Symposium 2015. USENIX Association, 2015, pp. 897–
912.

[8] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A Survey of Microar-
chitectural Timing Attacks and Countermeasures on Contemporary
Hardware,” IACR Cryptology ePrint Archive, vol. 2016, p. 613,
2016.

[9] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard,
“DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks,”
in USENIX Security Symposium 2016. USENIX Association, 2016,
pp. 565–581.

15



[10] L. Cai and H. Chen, “TouchLogger: Inferring Keystrokes on Touch
Screen from Smartphone Motion,” in USENIX Workshop on Hot
Topics in Security – HotSec. USENIX Association, 2011.

[11] A. J. Aviv, B. Sapp, M. Blaze, and J. M. Smith, “Practicality of
Accelerometer Side Channels on Smartphones,” in Annual Computer
Security Applications Conference – ACSAC 2012. ACM, 2012, pp.
41–50.

[12] L. Simon, W. Xu, and R. Anderson, “Don’t Interrupt Me While I
Type: Inferring Text Entered Through Gesture Typing on Android
Keyboards,” PoPETs, vol. 2016, pp. 136–154, 2016.

[13] M. Mehrnezhad, E. Toreini, S. F. Shahandashti, and F. Hao,
“TouchSignatures: Identification of User Touch Actions and PINs
Based on Mobile Sensor Data via JavaScript,” J. Inf. Sec. Appl.,
vol. 26, pp. 23–38, 2016.

[14] Y. Michalevsky, A. Schulman, G. A. Veerapandian, D. Boneh, and
G. Nakibly, “PowerSpy: Location Tracking Using Mobile Device
Power Analysis,” in USENIX Security Symposium 2015. USENIX
Association, 2015, pp. 785–800.

[15] X. Zhou, S. Demetriou, D. He, M. Naveed, X. Pan, X. Wang,
C. A. Gunter, and K. Nahrstedt, “Identity, Location, Disease and
More: Inferring Your Secrets From Android Public Resources,” in
Conference on Computer and Communications Security – CCS 2013.
ACM, 2013, pp. 1017–1028.

[16] Y. Acar, M. Backes, S. Bugiel, S. Fahl, P. D. McDaniel, and
M. Smith, “SoK: Lessons Learned from Android Security Research
for Appified Software Platforms,” in IEEE Symposium on Security
and Privacy – S&P 2016. IEEE, 2016, pp. 433–451.

[17] N. Zhang, K. Yuan, M. Naveed, X. Zhou, and X. Wang, “Leave Me
Alone: App-Level Protection against Runtime Information Gathering
on Android,” in IEEE Symposium on Security and Privacy – S&P
2015. IEEE Computer Society, 2015, pp. 915–930.

[18] P. Marquardt, A. Verma, H. Carter, and P. Traynor, “(sp)iPhone:
Decoding Vibrations From Nearby Keyboards Using Mobile Phone
Accelerometers,” in Conference on Computer and Communications
Security – CCS 2011. ACM, 2011, pp. 551–562.

[19] T. Zhu, Q. Ma, S. Zhang, and Y. Liu, “Context-free Attacks Using
Keyboard Acoustic Emanations,” in Conference on Computer and
Communications Security – CCS 2014. ACM, 2014, pp. 453–464.

[20] S. Biedermann, S. Katzenbeisser, and J. Szefer, “Hard Drive Side-
Channel Attacks Using Smartphone Magnetic Field Sensors,” in
Financial Cryptography – FC 2015, ser. LNCS, vol. 8975. Springer,
2015, pp. 489–496.

[21] L. Schwittmann, V. Matkovic, M. Wander, and T. Weis, “Video
Recognition Using Ambient Light Sensors,” in Pervasive Computing
and Communication Workshops – PerCom 2016. IEEE Computer
Society, 2016, pp. 1–9.

[22] C. Song, F. Lin, Z. Ba, K. Ren, C. Zhou, and W. Xu, “My Smart-
phone Knows What You Print: Exploring Smartphone-based Side-
channel Attacks Against 3D Printers,” in Conference on Computer
and Communications Security – CCS 2016. ACM, 2016, pp. 895–
907.

[23] A. Hojjati, A. Adhikari, K. Struckmann, E. Chou, T. N. T. Nguyen,
K. Madan, M. S. Winslett, C. A. Gunter, and W. P. King, “Leave
Your Phone at the Door: Side Channels that Reveal Factory Floor
Secrets,” in Conference on Computer and Communications Security
– CCS 2016. ACM, 2016, pp. 883–894.

[24] Q. Xiao, M. K. Reiter, and Y. Zhang, “Mitigating Storage Side
Channels Using Statistical Privacy Mechanisms,” in Conference on
Computer and Communications Security – CCS 2015. ACM, 2015,
pp. 1582–1594.

[25] S. Jana and V. Shmatikov, “Memento: Learning Secrets from Process
Footprints,” in IEEE Symposium on Security and Privacy – S&P
2012. IEEE Computer Society, 2012, pp. 143–157.

[26] R. Spreitzer, S. Griesmayr, T. Korak, and S. Mangard, “Exploiting
Data-Usage Statistics for Website Fingerprinting Attacks on An-
droid,” in Security and Privacy in Wireless and Mobile Networks
– WISEC 2016. ACM, 2016, pp. 49–60.

[27] C. Lin, H. Li, X. Zhou, and X. Wang, “Screenmilker: How to
Milk Your Android Screen for Secrets,” in Network and Distributed
System Security Symposium – NDSS 2014. The Internet Society,
2014.

[28] J. Balasch, B. Gierlichs, O. Reparaz, and I. Verbauwhede, “DPA,
Bitslicing and Masking at 1 GHz,” in Cryptographic Hardware and
Embedded Systems – CHES 2015, ser. LNCS, vol. 9293. Springer,
2015, pp. 599–619.

[29] D. Genkin, L. Pachmanov, I. Pipman, E. Tromer, and Y. Yarom,
“ECDSA Key Extraction from Mobile Devices via Nonintrusive
Physical Side Channels,” in Conference on Computer and Commu-
nications Security – CCS 2016. ACM, 2016, pp. 1626–1638.

[30] G. Goller and G. Sigl, “Side Channel Attacks on Smartphones and
Embedded Devices Using Standard Radio Equipment,” in Construc-
tive Side-Channel Analysis and Secure Design – COSADE 2015, ser.
LNCS, vol. 9064. Springer, 2015, pp. 255–270.

[31] P. Belgarric, P. Fouque, G. Macario-Rat, and M. Tibouchi, “Side-
Channel Analysis of Weierstrass and Koblitz Curve ECDSA on
Android Smartphones,” in Topics in Cryptology – CT-RSA 2016,
ser. LNCS, vol. 9610. Springer, 2016, pp. 236–252.

[32] L. Yan, Y. Guo, X. Chen, and H. Mei, “A Study on Power Side
Channels on Mobile Devices,” CoRR, vol. abs/1512.07972, 2015.

[33] C. H. Gebotys, S. Ho, and C. C. Tiu, “EM Analysis of Rijndael
and ECC on a Wireless Java-Based PDA,” in Cryptographic Hard-
ware and Embedded Systems – CHES 2005, ser. LNCS, vol. 3659.
Springer, 2005, pp. 250–264.

[34] Y. Nakano, Y. Souissi, R. Nguyen, L. Sauvage, J. Danger, S. Guil-
ley, S. Kiyomoto, and Y. Miyake, “A Pre-processing Composition
for Secret Key Recovery on Android Smartphone,” in Information
Security Theory and Practice – WISTP 2014, ser. LNCS, vol. 8501.
Springer, 2014, pp. 76–91.

[35] A. J. Aviv, K. L. Gibson, E. Mossop, M. Blaze, and J. M. Smith,
“Smudge Attacks on Smartphone Touch Screens,” in Workshop on
Offensive Technologies – WOOT 2010. USENIX Association, 2010.

[36] Y. Zhang, P. Xia, J. Luo, Z. Ling, B. Liu, and X. Fu, “Fingerprint
Attack Against Touch-Enabled Devices,” in Security and Privacy in
Smartphones & Mobile Devices – SPSM@CCS. ACM, 2012, pp.
57–68.

[37] P. Andriotis, T. Tryfonas, G. C. Oikonomou, and C. Yildiz, “A Pilot
Study on the Security of Pattern Screen-Lock Methods and Soft Side
Channel Attacks,” in Security and Privacy in Wireless and Mobile
Networks – WISEC 2013. ACM, 2013, pp. 1–6.

[38] M. Backes, M. Dürmuth, and D. Unruh, “Compromising
Reflections-or-How to Read LCD Monitors around the Corner,” in
IEEE Symposium on Security and Privacy – S&P 2008. IEEE
Computer Society, 2008, pp. 158–169.

[39] M. Backes, T. Chen, M. Dürmuth, H. P. A. Lensch, and M. Welk,
“Tempest in a Teapot: Compromising Reflections Revisited,” in
IEEE Symposium on Security and Privacy – S&P 2009. IEEE
Computer Society, 2009, pp. 315–327.

[40] F. Maggi, S. Gasparini, and G. Boracchi, “A Fast Eavesdropping At-
tack Against Touchscreens,” in Information Assurance and Security
– IAS 2011. IEEE, 2011, pp. 320–325.

[41] R. Raguram, A. M. White, D. Goswami, F. Monrose, and J. Frahm,
“iSpy: Automatic Reconstruction of Typed Input from Compromis-
ing Reflections,” in Conference on Computer and Communications
Security – CCS 2011. ACM, 2011, pp. 527–536.

[42] R. Raguram, A. M. White, Y. Xu, J. Frahm, P. Georgel, and
F. Monrose, “On the Privacy Risks of Virtual Keyboards: Automatic
Reconstruction of Typed Input from Compromising Reflections,”
IEEE Trans. Dependable Sec. Comput., vol. 10, pp. 154–167, 2013.

16



[43] Y. Xu, J. Heinly, A. M. White, F. Monrose, and J. Frahm, “See-
ing Double: Reconstructing Obscured Typed Input from Repeated
Compromising Reflections,” in Conference on Computer and Com-
munications Security – CCS 2013. ACM, 2013, pp. 1063–1074.

[44] D. Shukla, R. Kumar, A. Serwadda, and V. V. Phoha, “Beware,
Your Hands Reveal Your Secrets!” in Conference on Computer and
Communications Security – CCS 2014. ACM, 2014, pp. 904–917.

[45] J. Sun, X. Jin, Y. Chen, J. Zhang, Y. Zhang, and R. Zhang, “VIS-
IBLE: Video-Assisted Keystroke Inference from Tablet Backside
Motion,” in Network and Distributed System Security Symposium
– NDSS 2016. The Internet Society, 2016.

[46] Q. Yue, Z. Ling, X. Fu, B. Liu, K. Ren, and W. Zhao, “Blind
Recognition of Touched Keys on Mobile Devices,” in Conference
on Computer and Communications Security – CCS 2014. ACM,
2014, pp. 1403–1414.

[47] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson, “Touching From
a Distance: Website Fingerprinting Attacks and Defenses,” in Con-
ference on Computer and Communications Security – CCS 2012.
ACM, 2012, pp. 605–616.

[48] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel, “Website
Fingerprinting in Onion Routing Based Anonymization Networks,”
in Workshop on Privacy in the Electronic Society – WPES 2011.
ACM, 2011, pp. 103–114.

[49] T. Wang and I. Goldberg, “Improved Website Fingerprinting on Tor,”
in Workshop on Privacy in the Electronic Society – WPES 2013.
ACM, 2013, pp. 201–212.

[50] M. Juárez, S. Afroz, G. Acar, C. Dı́az, and R. Greenstadt, “A Critical
Evaluation of Website Fingerprinting Attacks,” in Conference on
Computer and Communications Security – CCS 2014. ACM, 2014,
pp. 263–274.

[51] A. Panchenko, F. Lanze, J. Pennekamp, T. Engel, A. Zinnen,
M. Henze, and K. Wehrle, “Website Fingerprinting at Internet Scale,”
in Network and Distributed System Security Symposium – NDSS
2016. The Internet Society, 2016.

[52] T. Stöber, M. Frank, J. B. Schmitt, and I. Martinovic, “Who Do
You Sync You Are?: Smartphone Fingerprinting via Application Be-
haviour,” in Security and Privacy in Wireless and Mobile Networks
– WISEC 2013. ACM, 2013, pp. 7–12.

[53] M. Conti, L. V. Mancini, R. Spolaor, and N. V. Verde, “Analyzing
Android Encrypted Network Traffic to Identify User Actions,” IEEE
Trans. Information Forensics and Security, vol. 11, pp. 114–125,
2016.

[54] S. Dai, A. Tongaonkar, X. Wang, A. Nucci, and D. Song, “Net-
workProfiler: Towards Automatic Fingerprinting of Android Apps,”
in IEEE INFOCOM 2013. IEEE, 2013, pp. 809–817.

[55] Q. Wang, A. Yahyavi, B. Kemme, and W. He, “I Know What You
Did on Your Smartphone: Inferring App Usage Over Encrypted Data
Traffic,” in Communications and Network Security – CNS 2015.
IEEE, 2015, pp. 433–441.

[56] S. Miskovic, G. M. Lee, Y. Liao, and M. Baldi, “AppPrint: Auto-
matic Fingerprinting of Mobile Applications in Network Traffic,”
in Passive and Active Measurement – PAM 2015, ser. LNCS, vol.
8995. Springer, 2015, pp. 57–69.

[57] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic, “AppScan-
ner: Automatic Fingerprinting of Smartphone Apps from Encrypted
Network Traffic,” in IEEE European Symposium on Security and
Privacy – EURO S&P 2016. IEEE, 2016, pp. 439–454.

[58] H. F. Alan and J. Kaur, “Can Android Applications Be Identified
Using Only TCP/IP Headers of Their Launch Time Traffic?” in
Security and Privacy in Wireless and Mobile Networks – WISEC
2016. ACM, 2016, pp. 61–66.

[59] B. Saltaformaggio, H. Choi, K. Johnson, Y. Kwon, Q. Zhang,
X. Zhang, D. Xu, and J. Qian, “Eavesdropping on Fine-Grained
User Activities Within Smartphone Apps Over Encrypted Network
Traffic,” in Workshop on Offensive Technologies – WOOT 2016.
USENIX Association, 2016.

[60] M. Schulz, P. Klapper, M. Hollick, E. Tews, and S. Katzenbeisser,
“Trust The Wire, They Always Told Me!: On Practical Non-
Destructive Wire-Tap Attacks Against Ethernet,” in Security and
Privacy in Wireless and Mobile Networks – WISEC 2016. ACM,
2016, pp. 43–48.

[61] M. Conti, M. Nati, E. Rotundo, and R. Spolaor, “Mind The Plug!
Laptop-User Recognition Through Power Consumption,” in Work-
shop on IoT Privacy, Trust, and Security – IoTPTS@AsiaCCS.
ACM, 2016, pp. 37–44.

[62] K. Ali, A. X. Liu, W. Wang, and M. Shahzad, “Keystroke Recog-
nition Using WiFi Signals,” in Mobile Computing and Networking
– MOBICOM 2015. ACM, 2015, pp. 90–102.

[63] J. Zhang, X. Zheng, Z. Tang, T. Xing, X. Chen, D. Fang, R. Li,
X. Gong, and F. Chen, “Privacy Leakage in Mobile Sensing: Your
Unlock Passwords Can Be Leaked through Wireless Hotspot Func-
tionality,” Mobile Information Systems, vol. 2016, pp. 8 793 025:1–
8 793 025:14, 2016.

[64] M. Li, Y. Meng, J. Liu, H. Zhu, X. Liang, Y. Liu, and N. Ruan,
“When CSI Meets Public WiFi: Inferring Your Mobile Phone Pass-
word via WiFi Signals,” in Conference on Computer and Commu-
nications Security – CCS 2016. ACM, 2016, pp. 1068–1079.

[65] Q. A. Chen, Z. Qian, and Z. M. Mao, “Peeking into Your App
without Actually Seeing It: UI State Inference and Novel Android
Attacks,” in USENIX Security Symposium 2014. USENIX Associ-
ation, 2014, pp. 1037–1052.

[66] W. Diao, X. Liu, Z. Li, and K. Zhang, “No Pardon for the Interrup-
tion: New Inference Attacks on Android Through Interrupt Timing
Analysis,” in IEEE Symposium on Security and Privacy – S&P 2016.
IEEE, 2016, pp. 414–432.

[67] K. Suzaki, K. Iijima, T. Yagi, and C. Artho, “Memory Deduplication
as a Threat to the Guest OS,” in European Workshop on System
Security – EUROSEC 2011. ACM, 2011, p. 1.

[68] D. Gruss, D. Bidner, and S. Mangard, “Practical Memory Dedupli-
cation Attacks in Sandboxed Javascript,” in European Symposium
on Research in Computer Security – ESORICS 2015, ser. LNCS,
vol. 9327. Springer, 2015, pp. 108–122.

[69] D. J. Bernstein, “Cache-Timing Attacks on AES,” 2004, URL:
http://cr.yp.to/papers.html#cachetiming.

[70] M. Weiß, B. Heinz, and F. Stumpf, “A Cache Timing Attack on
AES in Virtualization Environments,” in Financial Cryptography –
FC 2012, ser. LNCS, vol. 7397. Springer, 2012, pp. 314–328.

[71] M. Weiß, B. Weggenmann, M. August, and G. Sigl, “On Cache
Timing Attacks Considering Multi-core Aspects in Virtualized Em-
bedded Systems,” in Conference on Trusted Systems – INTRUST
2014, ser. LNCS, vol. 9473. Springer, 2014, pp. 151–167.

[72] A. Zankl, K. Miller, J. Heyszl, and G. Sigl, “Towards Efficient Eval-
uation of a Time-Driven Cache Attack on Modern Processors,” in
European Symposium on Research in Computer Security – ESORICS
2016, ser. LNCS, vol. 9879. Springer, 2016, pp. 3–19.

[73] R. Spreitzer and T. Plos, “On the Applicability of Time-Driven
Cache Attacks on Mobile Devices,” in Network and System Security
– NSS 2013, ser. LNCS, vol. 7873. Springer, 2013, pp. 656–662.

[74] R. Spreitzer and B. Gérard, “Towards More Practical Time-Driven
Cache Attacks,” in Information Security Theory and Practice –
WISTP 2014, ser. LNCS, vol. 8501. Springer, 2014, pp. 24–39.

[75] A. Bogdanov, T. Eisenbarth, C. Paar, and M. Wienecke, “Differ-
ential Cache-Collision Timing Attacks on AES with Applications
to Embedded CPUs,” in Topics in Cryptology – CT-RSA 2010, ser.
LNCS, vol. 5985. Springer, 2010, pp. 235–251.

[76] R. Spreitzer and T. Plos, “Cache-Access Pattern Attack on Dis-
aligned AES T-Tables,” in Constructive Side-Channel Analysis and
Secure Design – COSADE 2013, ser. LNCS, vol. 7864. Springer,
2013, pp. 200–214.

17



[77] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis,
“The Spy in the Sandbox: Practical Cache Attacks in JavaScript
and their Implications,” in Conference on Computer and Communi-
cations Security – CCS 2015. ACM, 2015, pp. 1406–1418.

[78] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard,
“ARMageddon: Cache Attacks on Mobile Devices,” in USENIX
Security Symposium 2016. USENIX Association, 2016, pp. 549–
564.

[79] X. Zhang, Y. Xiao, and Y. Zhang, “Return-Oriented Flush-Reload
Side Channels on ARM and Their Implications for Android De-
vices,” in Conference on Computer and Communications Security –
CCS 2016. ACM, 2016, pp. 858–870.

[80] L. Cai, S. Machiraju, and H. Chen, “Defending Against Sensor-
Sniffing Attacks on Mobile Phones,” in Workshop on Network-
ing, Systems, and Applications for Mobile Handhelds – MobiHeld.
ACM, 2009, pp. 31–36.

[81] A. Raij, A. Ghosh, S. Kumar, and M. B. Srivastava, “Privacy Risks
Emerging from the Adoption of Innocuous Wearable Sensors in
the Mobile Environment,” in Conference on Human Factors in
Computing Systems – CHI 2011. ACM, 2011, pp. 11–20.

[82] E. Owusu, J. Han, S. Das, A. Perrig, and J. Zhang, “ACCessory:
Password Inference Using Accelerometers on Smartphones,” in Mo-
bile Computing Systems and Applications – HotMobile 2012. ACM,
2012, p. 9.

[83] A. J. Aviv, “Side Channels Enable By Smartphone Interaction,”
Ph.D. dissertation, University of Pennsylvania, 2012.

[84] Z. Xu, K. Bai, and S. Zhu, “TapLogger: Inferring User Inputs
on Smartphone Touchscreens Using On-Board Motion Sensors,” in
Security and Privacy in Wireless and Mobile Networks – WISEC
2012. ACM, 2012, pp. 113–124.

[85] L. Cai and H. Chen, “On the Practicality of Motion Based Keystroke
Inference Attack,” in Trust and Trustworthy Computing – TRUST
2012, ser. LNCS, vol. 7344. Springer, 2012, pp. 273–290.

[86] E. Miluzzo, A. Varshavsky, S. Balakrishnan, and R. R. Choudhury,
“Tapprints: Your Finger Taps Have Fingerprints,” in Mobile Systems
– MobiSys 2012. ACM, 2012, pp. 323–336.

[87] D. Ping, X. Sun, and B. Mao, “TextLogger: Inferring Longer Inputs
on Touch Screen Using Motion Sensors,” in Security and Privacy
in Wireless and Mobile Networks – WISEC 2015. ACM, 2015, pp.
24:1–24:12.

[88] M. Mehrnezhad, E. Toreini, S. F. Shahandashti, and F. Hao, “Steal-
ing PINs via Mobile Sensors: Actual Risk versus User Perception,”
CoRR, vol. abs/1605.05549, 2016.

[89] R. Spreitzer, “PIN Skimming: Exploiting the Ambient-Light Sensor
in Mobile Devices,” in Security and Privacy in Smartphones &
Mobile Devices – SPSM@CCS. ACM, 2014, pp. 51–62.

[90] L. Simon and R. Anderson, “PIN Skimmer: Inferring PINs Through
the Camera and Microphone,” in Security and Privacy in Smart-
phones & Mobile Devices – SPSM@CCS. ACM, 2013, pp. 67–78.

[91] T. Fiebig, J. Krissler, and R. Hänsch, “Security Impact of High
Resolution Smartphone Cameras,” in Workshop on Offensive Tech-
nologies – WOOT 2014. USENIX Association, 2014.

[92] S. Narain, A. Sanatinia, and G. Noubir, “Single-Stroke Language-
Agnostic Keylogging Using Stereo-Microphones and Domain Spe-
cific Machine Learning,” in Security and Privacy in Wireless and
Mobile Networks – WISEC 2014. ACM, 2014, pp. 201–212.

[93] H. Gupta, S. Sural, V. Atluri, and J. Vaidya, “Deciphering Text
from Touchscreen Key Taps,” in Data and Applications Security
and Privacy – DBSec 2016, ser. LNCS, vol. 9766. Springer, 2016,
pp. 3–18.

[94] M. Hussain, A. Al-Haiqi, A. A. Zaidan, B. B. Zaidan, M. L. M.
Kiah, N. B. Anuar, and M. Abdulnabi, “The Rise of Keyloggers
on Smartphones: A Survey and Insight Into Motion-Based Tap
Inference Attacks,” Pervasive and Mobile Computing, vol. 25, pp.
1–25, 2016.

[95] A. Nahapetian, “Side-Channel Attacks on Mobile and Wearable
Systems,” in Consumer Communications & Networking Conference
– CCNC 2016. IEEE, 2016, pp. 243–247.

[96] H. Bojinov, Y. Michalevsky, G. Nakibly, and D. Boneh, “Mo-
bile Device Identification via Sensor Fingerprinting,” CoRR, vol.
abs/1408.1416, 2014.

[97] S. Dey, N. Roy, W. Xu, R. R. Choudhury, and S. Nelakuditi,
“AccelPrint: Imperfections of Accelerometers Make Smartphones
Trackable,” in Network and Distributed System Security Symposium
– NDSS 2014. The Internet Society, 2014.

[98] A. Das, N. Borisov, and M. Caesar, “Tracking Mobile Web Users
Through Motion Sensors: Attacks and Defenses,” in Network and
Distributed System Security Symposium – NDSS 2016. The Internet
Society, 2016.

[99] ——, “Do You Hear What I Hear?: Fingerprinting Smart Devices
Through Embedded Acoustic Components,” in Conference on Com-
puter and Communications Security – CCS 2014. ACM, 2014, pp.
441–452.

[100] Z. Zhou, W. Diao, X. Liu, and K. Zhang, “Acoustic Fingerprinting
Revisited: Generate Stable Device ID Stealthily with Inaudible
Sound,” in Conference on Computer and Communications Security
– CCS 2014. ACM, 2014, pp. 429–440.

[101] T. Hupperich, H. Hosseini, and T. Holz, “Leveraging Sensor Fin-
gerprinting for Mobile Device Authentication,” in Detection of In-
trusions and Malware & Vulnerability Assessment – DIMVA 2016,
ser. LNCS, vol. 9721. Springer, 2016, pp. 377–396.

[102] A. Kurtz, H. Gascon, T. Becker, K. Rieck, and F. C. Freiling,
“Fingerprinting Mobile Devices Using Personalized Configurations,”
PoPETs, vol. 2016, pp. 4–19, 2016.

[103] T. Hupperich, D. Maiorca, M. Kührer, T. Holz, and G. Giacinto, “On
the Robustness of Mobile Device Fingerprinting: Can Mobile Users
Escape Modern Web-Tracking Mechanisms?” in Annual Computer
Security Applications Conference – ACSAC 2015. ACM, 2015, pp.
191–200.

[104] J. Han, E. Owusu, L. T. Nguyen, A. Perrig, and J. Zhang, “ACCom-
plice: Location Inference Using Accelerometers on Smartphones,” in
International Conference on Communication Systems and Networks
– COMSNETS 2012. IEEE, 2012, pp. 1–9.

[105] S. Nawaz and C. Mascolo, “Mining Users’ Significant Driving
Routes with Low-Power Sensors,” in Conference on Embedded
Network Sensor Systems – SenSys 2014. ACM, 2014, pp. 236–
250.

[106] S. Narain, T. D. Vo-Huu, K. Block, and G. Noubir, “Inferring User
Routes and Locations Using Zero-Permission Mobile Sensors,” in
IEEE Symposium on Security and Privacy – S&P 2016. IEEE,
2016, pp. 397–413.

[107] S. Hemminki, P. Nurmi, and S. Tarkoma, “Accelerometer-Based
Transportation Mode Detection on Smartphones,” in Conference on
Embedded Network Sensor Systems – SenSys 2013. ACM, 2013,
pp. 13:1–13:14.

[108] B. Ho, P. D. Martin, P. Swaminathan, and M. B. Srivastava, “From
Pressure to Path: Barometer-based Vehicle Tracking,” in Embedded
Systems for Energy-Efficient Built Environments – BuildSys. ACM,
2015, pp. 65–74.

[109] Y. Michalevsky, D. Boneh, and G. Nakibly, “Gyrophone: Rec-
ognizing Speech from Gyroscope Signals,” in USENIX Security
Symposium 2014. USENIX Association, 2014, pp. 1053–1067.

[110] R. Schlegel, K. Zhang, X. Zhou, M. Intwala, A. Kapadia, and
X. Wang, “Soundcomber: A Stealthy and Context-Aware Sound Tro-
jan for Smartphones,” in Network and Distributed System Security
Symposium – NDSS 2011. The Internet Society, 2011.

[111] NewAE Technology Inc., “Fault Injection Raspberry PI,” https://
wiki.newae.com, accessed: 2016-08-03.

18

https://wiki.newae.com
https://wiki.newae.com


[112] K. Tobich, P. Maurine, P. Liardet, M. Lisart, and T. Ordas, “Voltage
Spikes on the Substrate to Obtain Timing Faults,” in Digital System
Design – DSD 2013. IEEE Computer Society, 2013, pp. 483–486.

[113] C. O’Flynn, “Fault Injection using Crowbars on Embedded Sys-
tems,” IACR Cryptology ePrint Archive, vol. 2016, p. 810, 2016.

[114] S. Ordas, L. Guillaume-Sage, and P. Maurine, “Electromagnetic
Fault Injection: The Curse of Flip-Flops,” Journal of Cryptographic
Engineering, pp. 1–15, 2016.

[115] L. Rivière, Z. Najm, P. Rauzy, J. Danger, J. Bringer, and L. Sauvage,
“High Precision Fault Injections on the Instruction Cache of
ARMv7-M Architectures,” in Hardware Oriented Security and Trust
– HOST 2015. IEEE Computer Society, 2015, pp. 62–67.

[116] S. P. Skorobogatov and R. J. Anderson, “Optical Fault Induction
Attacks,” in Cryptographic Hardware and Embedded Systems –
CHES 2002, ser. LNCS, vol. 2523. Springer, 2002, pp. 2–12.

[117] J. G. J. van Woudenberg, M. F. Witteman, and F. Menarini, “Prac-
tical Optical Fault Injection on Secure Microcontrollers,” in Fault
Diagnosis and Tolerance in Cryptography – FDTC 2011. IEEE
Computer Society, 2011, pp. 91–99.

[118] C. Roscian, A. Sarafianos, J. Dutertre, and A. Tria, “Fault Model
Analysis of Laser-Induced Faults in SRAM Memory Cells,” in Fault
Diagnosis and Tolerance in Cryptography – FDTC 2013. IEEE
Computer Society, 2013, pp. 89–98.

[119] S. Skorobogatov, “The Bumpy Road Towards iPhone 5c NAND
Mirroring,” CoRR, vol. abs/1609.04327, 2016.

[120] M. Hutter and J. Schmidt, “The Temperature Side Channel and
Heating Fault Attacks,” in Smart Card Research and Advanced
Applications – CARDIS 2013, ser. LNCS, vol. 8419. Springer,
2013, pp. 219–235.

[121] T. Müller and M. Spreitzenbarth, “FROST - Forensic Recovery
of Scrambled Telephones,” in Applied Cryptography and Network
Security – ACNS 2013, ser. LNCS, vol. 7954. Springer, 2013, pp.
373–388.

[122] G. He, M. Yang, X. Gu, J. Luo, and Y. Ma, “A Novel Active
Website Fingerprinting Attack Against Tor Anonymous System,” in
Computer Supported Cooperative Work in Design – CSCWD 2014.
IEEE, 2014, pp. 112–117.

[123] Y. Kim, R. Daly, J. Kim, C. Fallin, J. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping Bits in Memory Without Accessing
Them: An Experimental Study of DRAM Disturbance Errors,” in
International Symposium on Computer Architecture – ISCA 2014.
IEEE Computer Society, 2014, pp. 361–372.

[124] M. Seaborn and T. Dullien, “Exploiting the DRAM Rowhammer
Bug to Gain Kernel Privileges,” Blackhat 2015.

[125] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A Remote
Software-Induced Fault Attack in JavaScript,” in Detection of Intru-
sions and Malware & Vulnerability Assessment – DIMVA 2016, ser.
LNCS, vol. 9721. Springer, 2016, pp. 300–321.

[126] V. van der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss, C. Maurice,
G. Vigna, H. Bos, K. Razavi, and C. Giuffrida, “Drammer: Deter-
ministic Rowhammer Attacks on Mobile Platforms,” in Conference
on Computer and Communications Security – CCS 2016. ACM,
2016, pp. 1675–1689.

[127] V. Lomné, T. Roche, and A. Thillard, “On the Need of Randomness
in Fault Attack Countermeasures - Application to AES,” in Fault
Diagnosis and Tolerance in Cryptography – FDTC 2012. IEEE
Computer Society, 2012, pp. 85–94.

[128] T. Kwon and S. Na, “TinyLock: Affordable Defense Against
Smudge Attacks on Smartphone Pattern Lock Systems,” Computers
& Security, vol. 42, pp. 137–150, 2014.

[129] K. Krombholz, T. Hupperich, and T. Holz, “Use the Force: Evalu-
ating Force-Sensitive Authentication for Mobile Devices,” in Sym-
posium On Usable Privacy and Security – SOUPS 2016. USENIX
Association, 2016, pp. 207–219.

[130] C. V. Wright, S. E. Coull, and F. Monrose, “Traffic Morphing: An
Efficient Defense Against Statistical Traffic Analysis,” in Network
and Distributed System Security Symposium – NDSS 2009. The
Internet Society, 2009.

[131] X. Luo, P. Zhou, E. W. W. Chan, W. Lee, R. K. C. Chang, and
R. Perdisci, “HTTPOS: Sealing Information Leaks with Browser-
side Obfuscation of Encrypted Flows,” in Network and Distributed
System Security Symposium – NDSS 2011. The Internet Society,
2011.

[132] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton, “Peek-a-
Boo, I Still See You: Why Efficient Traffic Analysis Countermea-
sures Fail,” in IEEE Symposium on Security and Privacy – S&P
2012. IEEE Computer Society, 2012, pp. 332–346.

[133] X. Cai, R. Nithyanand, and R. Johnson, “CS-BuFLO: A Congestion
Sensitive Website Fingerprinting Defense,” in Workshop on Privacy
in the Electronic Society – WPES 2014. ACM, 2014, pp. 121–130.

[134] R. Nithyanand, X. Cai, and R. Johnson, “Glove: A Bespoke Website
Fingerprinting Defense,” in Workshop on Privacy in the Electronic
Society – WPES 2014. ACM, 2014, pp. 131–134.

[135] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner,
“Android Permissions: User Attention, Comprehension, and Behav-
ior,” in Symposium On Usable Privacy and Security – SOUPS 2012.
ACM, 2012, p. 3.

[136] G. Petracca, Y. Sun, T. Jaeger, and A. Atamli, “AuDroid: Preventing
Attacks on Audio Channels in Mobile Devices,” in Annual Computer
Security Applications Conference – ACSAC 2015. ACM, 2015, pp.
181–190.

[137] P. Shrestha, M. Mohamed, and N. Saxena, “Slogger: Smash-
ing Motion-based Touchstroke Logging with Transparent System
Noise,” in Security and Privacy in Wireless and Mobile Networks –
WISEC 2016. ACM, 2016, pp. 67–77.

[138] H. Wang, T. T. Lai, and R. R. Choudhury, “MoLe: Motion Leaks
through Smartwatch Sensors,” in Mobile Computing and Networking
– MOBICOM 2015. ACM, 2015, pp. 155–166.

[139] X. Liu, Z. Zhou, W. Diao, Z. Li, and K. Zhang, “When Good
Becomes Evil: Keystroke Inference with Smartwatch,” in Conference
on Computer and Communications Security – CCS 2015. ACM,
2015, pp. 1273–1285.

[140] A. Maiti, O. Armbruster, M. Jadliwala, and J. He, “Smartwatch-
Based Keystroke Inference Attacks and Context-Aware Protection
Mechanisms,” in Asia Conference on Computer and Communica-
tions Security – AsiaCCS. ACM, 2016, pp. 795–806.

[141] C. Wang, X. Guo, Y. Wang, Y. Chen, and B. Liu, “Friend or
Foe?: Your Wearable Devices Reveal Your Personal PIN,” in Asia
Conference on Computer and Communications Security – AsiaCCS.
ACM, 2016, pp. 189–200.

[142] A. Sarkisyan, R. Debbiny, and A. Nahapetian, “WristSnoop: Smart-
phone PINs Prediction Using Smartwatch Motion Sensors,” in Work-
shop on Information Forensics and Security – WIFS 2015. IEEE,
2015, pp. 1–6.

[143] A. Maiti, M. Jadliwala, J. He, and I. Bilogrevic, “(Smart)Watch
Your Taps: Side-Channel Keystroke Inference Attacks using Smart-
watches,” in International Symposium on Wearable Computers –
ISWC 2015. ACM, 2015, pp. 27–30.

[144] L. Arduser, P. Bissig, P. Brandes, and R. Wattenhofer, “Recognizing
Text Using Motion Data From a Smartwatch,” in Pervasive Com-
puting and Communication Workshops – PerCom 2016. IEEE
Computer Society, 2016, pp. 1–6.

[145] B. Farshteindiker, N. Hasidim, A. Grosz, and Y. Oren, “How to
Phone Home with Someone Else’s Phone: Information Exfiltration
Using Intentional Sound Noise on Gyroscopic Sensors,” in Workshop
on Offensive Technologies – WOOT 2016. USENIX Association,
2016.

[146] C. P. Garcı́a, B. B. Brumley, and Y. Yarom, “”Make Sure DSA
Signing Exponentiations Really are Constant-Time”,” in Conference
on Computer and Communications Security – CCS 2016. ACM,
2016, pp. 1639–1650.

19


	1 Introduction
	1.1 High-Level Categorization
	1.2 Outline

	2 Taxonomy
	2.1 Basic Concept of Side-Channel Attacks
	2.2 Types of Side-Channel Information Leaks
	2.3 Software-only Side-Channel Attacks
	2.4 Adversary Model and Attack Scenario

	3 A New Categorization System
	4 Passive Attacks
	4.1 Local Side-Channel Attacks
	4.2 Vicinity Side-Channel Attacks
	4.3 Remote Side-Channel Attacks

	5 Active Attacks
	5.1 Local Side-Channel Attacks
	5.2 Vicinity Side-Channel Attacks
	5.3 Remote Side-Channel Attacks

	6 Discussion of Countermeasures
	6.1 Local Side-Channel Attacks
	6.2 Vicinity Side-Channel Attacks
	6.3 Remote Side-Channel Attacks

	7 Classification and Trend Analysis
	8 Issues, Challenges, and Future Research
	9 Conclusion
	References

