
Return to the Zombie Gadgets: Undermining
Destructive Code Reads via Code Inference Attacks

Kevin Z. Snow, Roman Rogowski, Fabian Monrose
Department of Computer Science

University of North Carolina at Chapel Hill, USA
Email: kzsnow,rogowski,fabian@cs.unc.edu

Jan Werner
Renaissance Computing Institute (RENCI)

Chapel Hill, USA
Email: jjwerner@cs.unc.edu

Hyungjoon Koo, Michalis Polychronakis
Department of Computer Science

Stony Brook University, USA
Email: hykoo,mikepo@cs.stonybrook.edu

Abstract—The concept of destructive code reads is a new defen-
sive strategy that prevents code reuse attacks by coupling fine-
grained address space layout randomization with a mitigation
for online knowledge gathering that destroys potentially useful
gadgets as they are disclosed by an adversary. The intuition is
that by destroying code as it is read, an adversary is left with
no usable gadgets to reuse in a control-flow hijacking attack. In
this paper, we examine the security of this new mitigation. We
show that while the concept initially appeared promising, there
are several unforeseen attack tactics that render destructive code
reads ineffective in practice.

Specifically, we introduce techniques for leveraging constructive
reloads, wherein multiple copies of native code are loaded
into a process’ address space (either side-by-side or one-after-
another). Constructive reloads allow the adversary to disclose
one code copy, destroying it in the process, then use another
code copy for their code reuse payload. For situations where
constructive reloads are not viable, we show that an alternative,
and equally powerful, strategy exists: leveraging code association
via implicit reads, which allows an adversary to undo in-place code
randomization by inferring the layout of code that follows already
disclosed bytes. As a result, the implicitly learned code is not
destroyed, and can be used in the adversary’s code reuse attack.
We demonstrate the effectiveness of our techniques with concrete
instantiations of these attacks against popular applications. In
light of our successes, we argue that the code inference strategies
presented herein paint a cautionary tale for defensive approaches
whose security blindly rests on the perceived inability to undo
the application of in-place randomization.

Index Terms—memory disclosure; code reuse; return-oriented
programming; application security; fine-grained randomization

I. INTRODUCTION

Despite decades of research into application-level defenses,
a multitude of vulnerabilities continue to be discovered and
exploited in today’s feature-rich software ecosystem, includ-
ing web browsers, email clients, and document readers. A
seemingly endless cycle marches onwards—defenses address
known problems, new problems arise or prior assumptions
are invalidated, then attacks quickly bypass those previous
defenses, ad infinitum. For instance, the no-execute (NX)
primitive was introduced to prevent the execution of malicious
code injection into exploited program memory. As a result,
attackers turned to constructing their malicious program logic

by chaining together existing code fragments within the ex-
ploited program. These code reuse attacks either link together
entire functions (i.e., return-to-libc attacks) or combine short
instruction sequences (dubbed gadgets) ending with ret,
call, or jmp instructions.

In computer security parlance, this is called return-oriented
programming (ROP) [40] or jump-oriented programming
(JOP) [15, 10], depending on the type of gadgets used.
To thwart these attacks, address-space layout randomization
(ASLR) was widely adopted over the past decade as a means
to obfuscate the location of code necessary to construct these
code reuse payloads. Soon thereafter, ASLR was bypassed
by leveraging a memory disclosure vulnerability to disclose a
code pointer, then subsequently using this information to align
malicious code pointers with gadgets in the newly discovered
code region.

To address the shortcomings of contemporary ASLR,
Bhatkar et al. [6] proposed diversifying software between
subsequent runs using an instantiation of what is now called
fine-grained randomization. In short, the idea is to not only
randomize code region locations, but also the functions within
those regions, the basic blocks within those functions, as well
as the instructions and registers therein. In doing so, leaked
function pointers presumably provide too little information
to derive the location of useful ROP or JOP gadgets, thus
preventing this form of code reuse. Given the promise of
this idea, a plethora of fine-grained ASLR schemes have
appeared in the academic literature [35, 24, 47, 23, 28, 7, 19],
each with their own advantages and disadvantages. In gen-
eral, however, all of the various instantiations of fine-grained
randomization achieve their goal by enforcing a policy that
attempts to prevent the adversary from inferring the location
of gadgets given knowledge of leaked code pointers. However,
applications have since evolved to commonly provide dynamic
features, such as interactive scripting, that fundamentally al-
ter the adversarial model. That is, ASLR depends on the
secrecy of code region addresses, but a script controlled by
the adversary provides an opportunity for leaking this secret
prior to exploitation. Unfortunately, shortly after these works

began gaining traction, Snow et al. [42] presented a technique
called just-in-time code reuse (JIT-ROP), which expands this
technique to leak not just code pointers, but also the code
itself by following those pointers and recursively disclosing
each discovered page of code. Afterwards, the leaked code is
inspected, gadgets are identified, and a payload is compiled
just-in-time.

Spurred by the just-in-time attack paradigm, numerous
defenses that adapt, or improve upon, fine-grained ASLR have
recently been proposed to better fortify applications against
these attacks. Generally speaking, the approaches they take can
be categorized as either attempting to prevent the disclosure
of code [3, 4, 21, 16, 11], or attempting to prevent the
execution of disclosed code [45, 48]. Of these approaches,
only the work of Backes et al. [4], called XnR, and the concept
of destructive reads proposed by Tang et al. [45] (dubbed
Heisenbyte) and Werner et al. [48] (called NEAR) are
specifically designed to support commodity software, i.e., they
forgo the requirement of source code access and recompilation.

In this work, we shed light on the difficulty of designing
binary-compatible techniques for preventing the execution of
disclosed code, especially when real-world constraints are
taken into consideration. For example, the use of dynamically
loaded shared libraries, just-in-time code generation engines
(e.g., JavaScript or ActionScript), and the adversary’s ability
to control some aspects of program operation (such as open-
ing new browser tabs) are often neglected in the design of
application-level defenses, but are requisite features to support
performance and user experience goals. We focus on the
approaches of Tang et al. [45] and Werner et al. [48] which
both attempt to ensure that code or data can be executed if
and only if it has not been previously read. The instantiation
of this relaxed property is meant to avoid disruption of any
legitimate reads to data embedded within code segments,
which cannot be precisely identified during static analysis,
due to the complexity of many closed-source applications. At
the same time, this property ensures that gadgets revealed via
a memory disclosure cannot be later executed, as they have
been “destroyed” in the execute-only mapping of the same
locations. Sadly, we show that this primitive fails to account
for two new classes of attacks that are relatively easy to mount.

Our specific contributions are as follows:

• We introduce three new security properties that we argue
must be considered by application defenses that prevent
the execution of disclosed code; namely, code persistence,
singularity and dis-association.

• We show that implementing the notion of destructive code
reads for commodity applications is more difficult than
first thought, especially in light of the adversary’s ability
to break each of the aforementioned properties in recently
proposed work [45, 48].

• We explore novel methods of undermining binary com-
patible fine-grained randomization, which has potential
implications for the larger body of work that relies on
the notion of fine-grained randomization in general.

• We highlight the need for a series of potential new
directions for application defenses, such as the need for
binary-compatible randomization schemes, that prevent
code inference and the use of re-randomization at strate-
gic “trigger points.”

II. BACKGROUND AND RELATED WORK

For pedagogical reasons, we quickly review two concepts
that are key to the remainder of this paper, namely fine-grained
layout randomization and just-in-time code reuse attacks.

Program Memory

Executable	

Gadget	 A	 ret	

Gadget	 B	 ret	

Gadget	 C	 ret	

Gadget	 D	 ret	

Program Memory

Executable	
	 Gadget	 C	 ret	

Gadget	 A	 ret	

Gadget	 D	 ret	

Gadget	 B	 ret	

Execution i Execution i + 1

0x65000000:

0x52000000:

Fig. 1. Fine-grained randomization changes the location of the gadgets present
in a code segment.

Fine-grained randomization [6, 35, 24, 47, 23, 28, 7, 19]
attempts to address well-known weaknesses [32, 22, 41, 38,
44, 26, 5] of contemporary ASLR by not only randomizing the
locations of memory regions, but also shuffling functions, ba-
sic blocks, instructions, registers, and even the overall structure
of code and data. The outcome of this diversification process
is that the locations of any previously pinpointed gadgets are
arbitrarily different in each instance of the same code segment,
as illustrated in Figure 1. Even so, Snow et al. [42] showed
that fine-grained randomization alone, even assuming a perfect
implementation, does not prevent all control-flow hijacking
attacks that leverage code reuse. Consider, for instance, a
leaked code pointer that is not used to infer the location of
gadgets, but is rather used along with a memory disclosure
vulnerability to reveal the actual code bytes at the referenced
location.

As depicted in Figure 2, a just-in-time code reuse attack
uses the initially disclosed code pointer to recursively map
out as many code pages as possible in step ¶. As it does
so, gadgets and system API pointers are identified, then a
ROP payload is compiled on-the-spot, during the course of
exploitation. The payload is returned to the adversary’s script
and control flow is hijacked to execute the payload in step ·.
The attack is fundamentally enabled by the adversary’s ability
to repeatedly leverage a memory disclosure to leak actual code
bytes, rather than only code pointers. In response, a number of
works have emerged that attempt to mitigate just-in-time code
reuse attacks by either (i) making code regions executable but
non-readable—thus preventing code disclosure in step ¶, or

(ii) allowing code to be disclosed, but preventing the execution
of that disclosed code in step ·.

JIT-ROP Script

Map Memory

JIT Compile

Adversary's
Script

Disclose
ROP Payload

Execute
ROP Payload

➊

➋

Vulnerable Application
(w/ fine-grained randomization)

Fig. 2. In a JIT-ROP attack, code is disclosed to generate a ROP payload
on-the-fly, and then program control flow is redirected to execute the gadgets
of the assembled payload.

A. Preventing Code Disclosure

The approaches that attempt to stop attack progression at
step ¶ are, for the most part, instantiations of the long-
standing idea of execute-only memory (XOM) [31] but ap-
plied to contemporary OSes. Backes and Nürnberger [3], for
example, propose an approximation of XOM by eliminating
all code-to-code pointer references—thus preventing the recur-
sive code memory mapping step of just-in-time code reuse.
To do so, a special translation table mediates all function
calls. Unfortunately, such an approach requires heavy program
instrumentation, and the necessary program transformations
are only demonstrated to be achievable given source-level
instrumentation. Additionally, Davi et al. [18] later showed
that just-in-time payloads can still be constructed even in the
absence of code-to-code pointers.

Crane et al. [16, 17], Brookes et al. [12], and Braden
et al. [11] approach the problem of execute-only memory by
starting with the requirement of source-level access. Hence,
the many challenges that arise due to computed jumps and
the intermingling of code and data in commodity (stripped)
binaries, are alleviated. Readactor [16], for example, relies on
a modified compiler to ensure that all code and data is ap-
propriately separated. Execute-only memory is then enforced
by leveraging finer-grained memory permission bits made
available by extended page tables (EPT) in recent processors.
Likewise, Brookes et al. [12] also leverage Intel’s EPT to
provide an execute-only memory approach (called ExOShim),
but their approach does not provide the strong guarantees of
Crane et al. [16, 17].

Gionta et al. [21] also approach execute-only memory with
consideration for intermixed code and data. To do so, data
embedded in code sections is first identified via binary analysis
(with symbol information), then split into separate code-only
and data-only memory pages. At runtime, instruction fetches
are directed to code-only pages, while reads are directed to
data-only pages. Conditional page direction is implemented
by loading split code and data translation look-aside buffers
(TLBs) with different page addresses. One drawback of this

approach is that all recent processors now make use of a
unified second-level TLB, rendering this approach incompati-
ble with modern hardware. Moreover, static code analysis on
binaries is a difficult problem, leaving no other choice but
to rely on human intervention to separate code and data in
closed-source software. Thus, the security guarantees imbued
by that approach are only as reliable as the human in the loop.

Unlike the aforementioned works that require source code
[3, 16, 17], debug symbols, or human intervention [21], Backes
et al. [4] take a different approach that is geared toward
protection for commercial off-the-shelf (COTS) binaries. A
software implementation of execute-only-memory is provided
wherein all code regions are initially made inaccessible, which
causes a kernel-mode memory fault when code is executed
or read. A process is terminated if it attempts to read from
a code section, but is made accessible for code execution.
The accessible code page is again made inaccessible when
a fault occurs on a different page. Unfortunately, rather than
confronting the challenges of intermixed code and data head-
on, the approach of Backes et al. [4] allows for a limited
number of pages to be accessible at any point in time, and
increments a counter for each first instance of a code page read
while decrementing on execution. An application is terminated
if some undefined threshold is reached, presumably indicating
that too many reads of bytes of code have occurred. Given the
lack of guidance on how an appropriate threshold can be set
in practice, the security guarantees afforded by XnR remain
unclear. Note that systems like XnR [4], which temporarily
allow an attacker to non-destructively read significant parts
of code, can also be bypassed by simply gathering gadgets
from those temporarily available pages in a JIT-ROP fashion
by reading them directly.

B. Preventing Disclosed Code Execution

Heisenbyte [45] takes a radically different approach that
instead focuses on the concept of destructive reads, whereby
code is garbled after it is read. By taking advantage of exist-
ing virtualization support (i.e., EPT) and focusing solely on
thwarting the execution of disclosed code bytes, Heisenbyte’s
use of destructive code reads sidesteps the many problems that
arise due to incomplete disassembly in binaries, and thereby
affords protection of complex close-sourced COTS binaries.
Similarly, NEAR [48] implements a so-called no-execute-after-
read memory primitive using EPT on x86 Windows and other
hardware primitives on x86-64 and ARMv8 which, instead of
randomly garbling code, substitutes fixed invalid instruction(s),
hence ensuring that subsequent execution always terminates
the application. NEAR also demonstrates how valid data within
code sections can be automatically and reliably relocated on-
load, without the use of source code or debug symbols, which
significantly reduces average runtime overhead from 16.48%
in Heisenbyte to 5.72% in NEAR.

Both Tang et al. [45] and Werner et al. [48] provide an ex-
cellent overview of how destructive reads can be implemented
by leveraging EPT and conservatively relocating intermingled
code and data during an offline analysis phase. When a

protected application loads, a duplicate copy of its executable
memory pages is maintained, and that copy is used in the
event of a memory read operation. To detect read operations
in an executable memory page, the page is originally marked
as execute-only. For the purposes of this paper, the techniques
used to separate code and data are not of particular importance,
but interested readers are referred to Tang et al. [45][§4] for
more details.

Read Exception
(via EPT)

Code
Disclosure

Destroy Code

Swap-in
Data Page

Swap-in
Executable Page

Execution of
Destroyed Code

Runtime
Exception

Terminate
Process

Continue
Process

enforces

Single-step
(Allow Read)

Fig. 3. Overview of destructive reads.

In our evaluations we use the NEAR implementation for the
32-bit Microsoft Windows platform1. We emphasize, however,
that the security implications outlined in this paper are equally
applicable to both approaches. The high-level overview is
shown in Figure 3. NEAR also leverages EPT for marking code
pages as execute-only for the sole purpose of intercepting the
disclosure of code. Similar to Heisenbyte, a kernel module is
used to hook the system page fault handler, identify newly
loaded code pages, and communicate with the hypervisor
module to mark those pages as execute-only. The act of
reading a byte of code results in an invalid opcode being
written to that location in memory, which would generate an
exception in the event that the previously disclosed code is
later executed. Further, we reiterate that fine-grained ASLR is
a prerequisite for execute-only memory protections, as without
randomization there is no need for an adversary to dynamically
disclose code at runtime. To fulfill this requirement, we
use the publicly available implementation of in-place code
randomization [35].

III. ASSUMPTIONS

As noted earlier, unlike the recent body of work on pre-
venting code disclosure attacks [3, 21, 16, 17, 18, 12], Tang
et al. [45] suggest a new defensive model wherein preventing
the execution of disclosed code is the ultimate goal. To
be able to achieve this goal for commodity software (i.e.,
without requiring access to source code), several important
assumptions underscore the design of destructive code reads.
Specifically, it is assumed that a suite of application defenses
are in place that prevent all control-flow hijacking attacks,
with the exception of so-called just-in-time code reuse attacks
(JIT-ROP) [42]. Destructive reads, therefore, are the proposed

1The thin hypervisor implemented by Werner et al. [48] is available under
an open source license at github.com/uncseclab

solution to mitigating such attacks. Hence, in this paper, we
also assume that the following mitigations are in place:

• Non-Executable memory: The stack(s) and heap(s) of
the protected program are non-executable, thus preventing
an attacker from directly injecting new executable code
into data regions. Furthermore, all executable regions
(including those of shared libraries) are non-writable; thus
the modification of existing code is not possible.

• Fine-grained randomization: Program and library code
regions are randomized using binary-compatible trans-
formations on the ordering of registers and instructions
within basic blocks. To achieve binary compatibility, we
assume the techniques of Pappas et al. [35] are employed,
as no other proposed approach meets these goals without
auxiliary information (i.e., source code or debug symbols)
for complex COTS software.

• JIT mitigations: Browser-specific defenses against JIT-
spraying instructions useful for code injection and code
reuse attacks are in use. For example, Internet Explorer
includes countermeasures that share commonalities with
Librando [25].

• Destructive Code Reads: We assume that the act of
reading any byte of code immediately precludes that
specific byte of code from being executed later.

The aforementioned assumptions are in accordance with those
of both the just-in-time code reuse paradigm given by Snow
et al. [42] and the destructive code read defense presented
by Tang et al. [45] and Werner et al. [48]. We remind the reader
that the fact that binary compatibility is required, means that
only in-place fine-grained code diversification can be assumed.
We elaborate on the reasons for that next.

A. Implications of Binary-compatible Fine-grained ASLR

Binary compatible fine-grained ASLR transformations are
(thus far) only able to reliably achieve a subset of those
transformations possible in schemes that randomize code by
utilizing program source code (or debug symbols). The reason
for this disparity is that binary code analysis is a provably
undecidable problem [46]. Because of this fact, the use of
more aggressive fine-grained randomization strategies, such
as randomizing the location of functions or basic blocks, or
randomly inserting inaccessible guard regions between pages
of code, remains a significant challenge. Existing attempts in
doing so at the binary level, such as Binary Stirring [47], which
rearranges all basic blocks present in a code segment, rely on
fragile heuristics for the recovery of jump tables, computed
jump targets, callback routines, and other code intricacies
that complicate code disassembly. Indeed, Wartell et al. [47]
demonstrate the applicability of Binary Stirring using solely
main executables (not libraries) of simple utility programs.
Note that although binary metadata such as relocation in-
formation or export tables are leveraged by state-of-the-art
disassemblers to improve the coverage and accuracy of code
identification and control flow graph extraction, imprecisions
still exist due to the above code intricacies.

Header
size
section
pointers

Initial disclosure
location

(known offset)

off
limits

off
limits

off
limits

Backward scan
to disclose gadgets

and file header

Forward scan
to disclose gadgets

Fig. 4. In contrast to the original JIT-ROP attack [42], the absence of guard pages allows for linear scanning of memory, and the disclosure of any code that
is not within the program’s normal execution path (represented by the gray areas).

Instead, binary compatible fine-grained ASLR schemes [35,
29] perform code transformations in-place, i.e., as in rearrang-
ing code within a basic block, without changing its location,
rather than globally moving large swaths of code, which
requires identifying and rewriting all code that interacts with
the moved sections; again, an undecidable problem [46].

Thus, one can conclude that a just-in-time code reuse attack
can take a simpler approach to identifying code pages than
that presented by Snow et al. [42]. In that work, the existence
of guard pages (i.e., randomly introduced in-accessible pages)
were dealt with by disassembling each known page of code
and only queuing new pages observed as instruction operands
in the first page. Instead, in our case, the adversary can
precompute the offset from the initially disclosed function
pointer to the beginning of the module that contains a func-
tion, as is routinely done by exploits in-the-wild as the first
step in bypassing coarse-grained ASLR. Furthermore, even if
functions are randomized (which has not been shown to be
practical to date for complex COTS binaries), the adversary
could walk backwards in memory, page-by-page, until the first
few bytes of the page match the binary-format header for the
target platform.

Figure 4 illustrates these simplified strategies. In the module
depicted, the initially disclosed pointer remains at a fixed offset
between randomizations with in-place randomization. Hence,
one either computes the offset of that initial pointer offline
prior to attack, or steps backwards carefully avoiding off-limits
pages at runtime while searching for the binary header. In face
of destructive code reads, the off-limits regions represent por-
tions of code that would be executed during normal program
operation, and hence we must avoid destroying that code.

Given that the adversary now knows the base address
of a given module, one can parse the information in that
header to determine the module layout, including start and
end addresses, as well as the location of import tables. Thus,
one can use this information to directly disclose the entire
code region of a module, as well as obtain references to all
other modules referenced by that module. In short, binary
compatible fine-grained ASLR provides the attacker with the
opportunity to acquire a superset of the gadgets obtained via
the so-called JIT-ROP attack [42]. However, up to this point,
destructive code reads still prevent the adversary from using
any discovered gadgets by destroying the code as it is read.

B. Adversarial Assumptions

Similar to Snow et al. [42] and Tang et al. [45], we assume
an adversary who can read and write arbitrary memory of the
vulnerable process. Additionally, we assume that the adversary
is capable of running scripted code within the limits of the
attacked application (e.g., JavaScript or ActionScript code) and
storing the gathered information either locally, e.g., in cookies
or in HTML5 Local Storage [1], or on a remote server.

At this point, it is prudent to note that the concept of
destructive reads only works in cases where the following
(implicit) assumptions hold:

• Code Persistence: Code may not be loaded and unloaded
by the adversary. This assumption guarantees that an
adversary may not restore destroyed code after learning
its layout.

• Code Singularity: The process may not contain any
duplicate code sections. This assumption guarantees that
an adversary may not infer any information about the
code in process memory by reading another existing copy
of that code.

• Code Dis-association: Any information discovered dur-
ing an attempted attack can not be relied upon in subse-
quent attacks. This assumption is needed to ensure that
an adversary cannot mount an incremental attack against
an application disclosing partial information and then
reusing it in the next stage of an attack.

Unfortunately, these assumptions are easily broken in prac-
tice, especially in scripting environments. In what follows,
we explore how breaking any of those implicit assumptions
results in the complete compromise of the security afforded
by destructive code reads, thereby allowing the attacker to re-
enable the use of just-in-time code reuse attacks.

IV. UNDERMINING DESTRUCTIVE READS

Next, we detail four distinct strategies to just-in-time dis-
close a usable code reuse payload in face of destructive code
reads. Each of these strategies breaks one of the three implicit
assumptions detailed in section §III-B to accomplish the stated
goal. In short, we first demonstrate the need for code per-
sistence by building code reuse payloads from shared library
code that can be unloaded and reloaded by the adversary on
demand through scripting or creating a new process. We also
explore the need for code singularity by demonstrating that

an adversary can load similar copies of JIT-compiled code
that contains fixed usable gadgets. Lastly, we detail a more
concerning attack that entails implicit reading of code, thus
avoiding code destruction altogether. This attack turned out to
be more powerful than we first envisioned, and motivates the
need for a stronger dis-association property that is not present
in any binary-compatible fine-grained randomization scheme
we are aware of.

A. Code Cloning via JIT Script Engines

The first strategy for defeating destructive code reads (which
we refer to as code cloning) targets the weak assumption of
code singularity. That is, the strategy of destroying code after it
is read only provides a benefit if multiple copies of the target
code can not co-exist in memory. This assumption holds in
most cases (e.g., program code sections are unique, only one
copy of shared libraries are loaded in a process), but when it
does not, attackers can disclose and destroy one copy of the
code while using the second copy of the code to execute their
just-in-time payload.

Unfortunately, there exists at least one ubiquitous practice
that breaks the code singularity assumption—just-in-time (JIT)
compilation. Web browsers and document readers provide
JIT compilers for JavaScript (as well as ActionScript and
Java). Worse yet, the JIT-compilation process can be precisely
controlled by the adversary through scripts embedded in web
pages or documents [36, 9]. To this end, we designed and
implemented a JavaScript JIT code cloner that enables an
adversary to create two native code regions from the same
source JavaScript code, then to disclose gadgets from the first
code region which are immediately destroyed, and finally to
execute those same gadgets using a payload that references
the gadgets still available in the second code region.

Native JIT
Code

(Copy 1)

Native JIT
Code

(Copy 2)

�ACL�G�CL;L(L��L;L	L"F!�A$;�D�L;���LJ
LL�G� �0�C���D�A����F"=��
-

...

2��D�'��L2��D�'�L(L1�$�;'0A��';A"D���
+�D'CA+��L(L+;D� AD������'D�2��D�'���
)G�; �� �L(L)�<FD'�����'D�
LL+�D'CA+���L2��D�'���
�;<��=�A"'CA , AH�)G�; �� ���

Create

Disclose &
Destroy

Execute
Gadgets

Fig. 5. Countering destructive code reads with JavaScript JIT cloning.

The high-level work flow is depicted in Figure 5. The
adversary first triggers compilation of a large segment of
JavaScript code using an eval statement. After the code is
generated, loaded in memory, and protected by destructive
reads, the adversary must identify the location of these JIT-
compiled code regions.

For pedagogical reasons, the sample code shown in Figure 5
was used to create an abundance of JIT-compiled copies to aid
our understanding of how an adversary can initially navigate

to the JIT-compiled regions using a memory disclosure vul-
nerability. In short, we found that in both Internet Explorer
and Firefox, the global data section of a shared library related
to JavaScript functionality contains a pointer (at a fixed offset)
to a heap region that in turn points to the JIT-compiled code
region(s). Thus, an adversary would simply use the memory
disclosure vulnerability to follow a series of data pointers to
eventually arrive at the beginning of each JIT-compiled region.

Once there, the attack continues with a full code disclosure
of one of these regions, which triggers the destruction of the
code that was read. After disclosing enough code, the learned
knowledge of gadgets from the destroyed section is used by
adjusting their address by a fixed offset (the difference in the
JIT-compiled code region base addresses) and executing the
payload in the code region clone. In Section V, we elaborate
on the gadgets that can be generated and discovered via
JIT-cloning, as well as the effects of existing JIT-spraying
mitigations.

B. Code Non-Persistence via Shared Library Reloading

The JIT-cloning attack subverts destructive code reads based
on the observation that program code regions are not always
unique. We now turn our attention to whether the assumption
of code persistence holds in practice. That is, we consider
which techniques one might apply to modify (or restore) code
that has previously been destroyed. Unfortunately, we need not
look far, as during our preliminary explorations we observed
shared libraries being dynamically loaded and unloaded during
normal program operation. Indeed, the dynamic load and
unload capability of shared libraries provides programs with
several benefits, such as the ability to support third-party plug-
ins and the ability to transiently leverage infrequently used
features, which minimizes the application memory footprint.

The problem, of course, is that if one can load and unload
libraries on demand, destructive code reads are immediately
subverted. To see why, consider an adversary that first loads a
library of interest, then discloses and destroys the library code,
triggers the unloading of the library, and finally triggers the
loading of a fresh copy once again. Practically, however, one
cannot directly load and unload libraries within the context of
an embedded script. Nevertheless, there exist a multitude of
opportunities for indirectly reloading shared libraries.

Shared
Library

(Instance 1)

Load
Disclose &

Destroy
Unload

Load
Execute
Gadgets

���=��"�"����;���.(�.���;���
���;��!��"�"
""��������(����;�����������������
���=��"�"�����
����;�����������;�����

���=��"�"����;���.(�.���;���
)��������;���	�� ����;��!����

(Instance 2)

Fig. 6. Countering destructive reads with shared library reloading via
embedded JavaScript.

Without much effort, we were able to identify an instance
of indirect library reloading by launching a web benchmark
suite in a browser while monitoring all library loading and un-
loading operations. The benchmark tests a number of auxiliary
features, including an analysis of how well the browser renders
a WebGL graphic canvas using JavaScript by dynamically
writing the WebGL object to the rendered HTML. During that
test, we observed that Microsoft Internet Explorer 11 loads the
graphics library d3d10warp.dll to handle rendering, and
then unloads that library when the benchmark proceeds to the
next test (via a page refresh).

We leverage this observation in the attack depicted in
Figure 6. The behavior is not unique to IE, as we found
that Firefox (version 41) transiently loads a number of li-
braries, including urlmon.dll, to handle the download of
a compressed file. The download action can be automatically
and transparently invoked via a snippet of JavaScript code
embedded in a web page controlled by the adversary. These
libraries are also unloaded when the page is refreshed, and
thus enable one to disclose, destroy, refresh, and then execute
those disclosed gadgets.

Library reloading enables the disclosure of gadgets from
one library at a time, but an even more direct approach that
allows the reloading of all program code at once exists. The
strategy for doing so is explored next.

C. Code Non-Persistence via Process Reloads

Modern applications, such as web browsers, empower the
adversary with a startling level of control over their target
system, even prior to hijacking control-flow. As previously
shown, we can load and unload specific libraries in the
target process. We can also create new processes on the
target system, for example, by embedding a small snippet
of JavaScript code (e.g.,window.open(url)) in a web page,
which renders the target web page in a new browser tab.
Modern browsers attempt to strongly enforce the same-origin
policy and sandbox potential exploits by launching these tabs
in completely separate processes.2 In countering destructive
reads, one can view these adversary-created tabs as disposable
sources for gadget disclosure.

The high-level work flow of an attack that takes advantage
of multiple processes is presented in Figure 7. First, the
attacker triggers a new process (Process 3) by creating a
separate browser tab via JavaScript, then discloses gadgets
in all accessible code regions, destroying that code in the
process and relaying the gadget information on-the-fly to
the original process. This can be achieved either using an
adversary-controlled web server as an intermediary, or locally
by leveraging capabilities of the HTML5 local storage API [1].

Next, the payload is built and executed in the original
process whose code has not been destroyed. The challenge is
in taking care to avoid disclosing and destroying code in the
tabbed process that is necessarily executed in the work flow

2In practice, some browsers heuristically decide when a tab should be
created as a separate process.

of relaying the disclosed gadget information. However, that
can be easily overcome by recording the requisite code paths
offline, prior to deploying the exploit, and then simply skipping
disclosing any code bytes in that path during the just-in-time
disclosure phase. As binary compatible fine-grained ASLR
(i.e., in-place randomization) is assumed, we can accurately
blacklist byte ranges to avoid those that remain consistent
across different instances of the same randomized library.

Adversary Controlled Servers
Web Browser Broker

(Process 1)

Landing
Page

(Server 1)

Gadget
Disclosure

Page
(Server 2)

Landing
Tab

(Process 2)
New Tab

(Process 3)

GET Landing Page

XMLHttpRequest(s) for
Gadgets Leaked

GET Leak Page

POST Gadget(s) Leaked

JS: open new tab

JS: JIT-ROP attack

JS: ROP payload &
control-flow exploit

Gadget
Store

Gadgets
Destroyed

Gadgets
Available

Fig. 7. Countering destructive code reads with process reloading using
multiple browser tabs.

We later show in Section V that even when avoiding the
disclosure of code in the work flow execution path, one can
identify gadgets of all the requisite types needed to just-in-
time compile a code reuse payload. However, before doing
so, we present a more insidious attack that takes advantage
of specific limitations of the combination of destructive code
reads with binary-compatible code randomization.

D. Code Association via Implicit Reads

To allow for precise differentiation between code and data
embedded within code segments, execute-only memory us-
ing destructive reads is enforced at a byte-level granularity.
Although this approach effectively prevents the execution of
code that has been previously read, its implications regarding
an attacker’s ability to infer the layout of code that follows
already disclosed bytes requires careful consideration. It is
conceivable that depending on the applied code randomization
strategy, reading only a few bytes of existing code might be
enough for making an informed guess about the instructions
that follow the disclosed code without actually reading them.

This issue is particularly pertinent for binary-only defenses
that rely on specific, fine-grained code randomization tech-
niques due to the imprecision of code disassembly and static
analysis. In-place code randomization [35], for instance, em-
ploys a set of narrow-scoped code transformations that proba-
bilistically alter the functionality of short instruction sequences
that can be used as gadgets. In what follows, we discuss how
an attacker can infer the particular randomized instance of a
gadget for each of the four code transformations used by in-
place code randomization [35], as well as the recent instruction

push ebx

push esi

mov ebx,ecx

push edi

mov esi,edx

...

pop edi

pop esi

pop ebx

ret

push edi

push ebx

push esi

mov ebx,ecx

mov esi,edx

...

pop esi

pop ebx

pop edi

ret

P
ro
lo
g
u
e

E
p
ilo
g
u
e

Disclosure

Inference

Original Randomized

Fig. 8. Example of indirect disclosure against register preservation code
reordering. By disclosing the first two instructions of a randomized function’s
prologue, an attacker can precisely infer the structure of the randomized gadget
at the function’s epilogue.

displacement technique [29]. We have evaluated the feasibility
of indirect code disclosure against the two most effective (in
terms of gadget coverage) of these transformations, and as we
show in Section V-C, we can infer the randomized state of the
vast majority of all randomized gadgets.

Instruction substitution is a randomization strategy that re-
places existing instructions with functionally-equivalent ones,
with the goal of altering any overlapping instructions that are
part of a gadget. Given that the original binary code of a
program and the sets of equivalent instructions are common
knowledge, an attacker knows a priori all instructions that are
candidates for substitution. By just reading the opcode byte
of a candidate-for-substitution instruction in the randomized
instance of a program, an attacker can precisely infer the
sequence of bytes that follow the opcode byte (i.e., the
instruction’s operands), and consequently, the state of any
overlapping randomized gadget. If the disclosed opcode is also
part of the randomized gadget, however, the part of the gadget
that starts after the opcode byte will remain usable.

Basic block instruction reordering is another common code
randomization approach that changes the order of instructions
within a basic block according to an alternative, functionally
equivalent instruction scheduling. By precomputing all pos-
sible orderings of a given basic block, an attacker may be
able to infer the order of instructions towards the end of the
block by just reading a few instructions from the beginning
of the block. The feasibility of this inference approach for a
given gadget depends on the size of the basic block in which
the gadget is contained, the location of the gadget within the
block, and the number of possible instruction orderings.

Register preservation code reordering changes the order
of the push and pop instructions that are often found
at a function’s prologue and epilogue, respectively. These
instructions are used to preserve the values of callee-saved
registers that would otherwise be overwritten by the current
function. Since the registers are restored in the reverse order in
which they were push’ed, an attacker can precisely infer the
structure of “pop; pop; ret;” gadgets that are part of an
epilogue by reading the randomized code of the corresponding

push edi

mov edi,[ebp+0x8]

mov eax,[edi+0x14]

test eax,eax

...

lea ecx,[ebp-0x4]

push ecx

push edi

call eax

Original Randomized

push eax

mov eax,[ebp+0x8]

mov edi,[eax+0x14]

test edi,edi

...

lea ecx,[ebp-0x4]

push ecx

push eax

call edi
Inference

Disclosure

Fig. 9. Example of indirect disclosure against register reassignment. By
disclosing just one instruction that involves a reassigned register at the
beginning of its live region, an attacker can precisely infer what registers
are used in the randomized instructions of the gadget.

prologue, as illustrated in Figure 8. Register preservation
code reordering has the highest coverage among the four
transformations, altering about half of all available gadgets
in a code segment [35].

Register reassignment swaps the register operands of in-
structions throughout overlapping live ranges (a live range
begins with an instruction that defines a register and comprises
all instructions in which that definition is live). Given that
an attacker can precompute all live regions in the original
code, reading even a single instruction at the beginning of a
live region might be enough to infer the structure of gadgets
towards the end of that region, as illustrated in Figure 9.
Register reassignment has the second highest coverage among
the four transformations, altering more than 40% of the
gadgets in a code segment [35].

Instruction displacement [29] relocates sequences of in-
structions that contain gadgets into random locations within a
different code segment, and overwrites the original code with
trap instructions. The semantics of the code are preserved by
patching the starting address of a moved code region with a
direct jmp instruction to the new location. Consequently, an
attacker can read the operand of the jmp instruction, and infer
the location of a displaced gadget.

Note that even if we assume that a more aggressive code
diversification technique such as function and basic block
reordering [47] is applied, code inference may still be possible.
If only the location—but not the internal structure—of basic
blocks (or even easier, whole functions) is randomized, then
the disclosure of a long-enough unique sequence of bytes will
be enough to infer the rest of a basic block’s (or function’s
code). Given that basic block reordering is currently not
applicable for the complex COTS software targeted by the
binary-level execute-only memory protections considered in
this work, we leave the evaluation of such fingerprinting-based
inference attacks as part of our future work.

E. Implementation

Our prototype implements one instantiation of each of the
four attack strategies. The resulting proof-of-concept consists

of a single HTML page with four buttons, one that launches
each of the distinct attack strategies using JavaScipt embedded
in the page. Our attack uses the same Internet Explorer
memory disclosure exploit as used by Snow et al. [42].

1) Enhanced JIT-ROP: Due to the relaxed assumption of
binary compatible fine-grained ASLR (see section §III), we
take a different approach to mapping out code regions. That is,
we do not recursively disassemble code pages by identifying
call sites pointing to different pages. In fact, this step is not
required; since all randomization must be done in-place, a
single disclosed function pointer gives us enough information
to infer the start and end address of that entire code module.
Thus, we can linearly inspect the code in each identified
code region and recursively reach other shared libraries by
examining the import table in each known module. This
technique results in a superset of the gadgets identified using
the JIT-ROP technique [42].

2) Destructive Code Reads: To test our attacks against the
destructive code read paradigm, we utilized the implemen-
tation discussed in Section II-B. This implementation works
with complex commodity software such as Internet Explorer,
Chrome, Firefox and Adobe Acrobat without any compati-
bility issues. Further, we verified that the destructive code
read implementation functions correctly by using a memory
disclosure vulnerability in Internet Explorer and observing that
the execution of disclosed gadgets resulted in the application
terminating.

V. EVALUATION

We now evaluate the practicality of our attacks against
destructive code reads by using them in conjunction with the
same real-world exploit against Internet Explorer as in [42]
on Windows 8 (32-bit), as well as simulated exploits against
Mozilla Firefox (version 41) and several versions of Adobe
Acrobat. We also provide empirical evaluations of the usable
(that is, not destroyed) gadgets that can be identified in our
attacks and demonstrate that just-in-time ROP payloads can
be successfully constructed and executed.

A. On Availability of JavaScript JIT-Cloning Gadgets

To determine the feasibility of JIT-Cloning, i.e., disclosing
code on one JIT-compiled region and later executing discov-
ered gadgets using a copy of the destroyed region, we must
evaluate several factors. First, we must determine both how
many gadgets we can persuade the JIT engine to produce.
Without the use of destructive code reads, all of these gadgets
would be available for use by the adversary. When destructive
code reads are in use, however, we may only use the subset of
the gadgets we identify that are consistently available across
all copies of that JIT-compiled region. Since some JIT-spray
mitigations are in place among commodity web browsers,
we would expect that JIT code copies are, in practice, not
identical, but rather they are similar to one another. Hence, we
must determine if these copies are similar enough to provide
one with a consistent set of available gadgets.

start = ’for (var i = 0; i <100000; ++ i) {’
contents = ’’
for (var j = 0; j < nConstants; j++) {
var randGadget = Math.floor(
Math.random() * 0xffffffff); // 4-byte gadgets

contents += ’g’ + j + ’ = ’ + randGadget + ’;’;
}
end = ’}’

eval(start+contents+end) // generate copy 1
eval(start+contents+end) // generate copy 2

Listing 1. Snippet of naive JavaScript code used to spray random gadgets.
By evaluating this code twice we generate two similar JIT-compiled regions.

To explore this issue, we evaluated two copies of the same
snippet of JavaScript code, depicted in Listing 1. The outer
loop attempts to coax the heuristics of the JavaScript engine
to JIT the code within the loop. Inside the loop a long series
of random constant assignments are made. Intuitively, gadgets
are randomly generated within the operands of instructions
assigning those constant values. Since we just-in-time disclose
gadgets, we do not necessarily care exactly how the JIT engine
interprets and compiles the code, so long as gadgets are in fact
generated.

The JavaScript was launched by embedding it into a web
page and browsing to that page with Mozilla Firefox (32-bit,
version 41). Our analysis shows that two (nearly) identical
copies of JIT-compiled code are loaded into program memory
at the same time. Moreover, those copies contained identical
gadgets at identical offsets within the JIT-compiled regions.
Since an arbitrary number of gadgets may be generated by
evaluating larger amounts of code, and prior work has already
demonstrated far more advanced strategies for JIT-spraying
gadgets [37, 39, 2], we leave more intricate techniques for the
generation of gadgets as an exercise for future work.

We also experimented with the code of Listing 1 us-
ing Internet Explorer 10 (32-bit). Unfortunately, the listed
JavaScript did not appear to invoke the JavaScript engine’s JIT-
compilation. Upon further investigation, we found that IE has
an undisclosed set of criteria for triggering JIT-compilation.
Additionally, as a response to attacks that force a JIT en-
gine to generate on-demand the desired shellcode or ROP
gadgets, IE and other JIT engines have started employing
code diversification techniques such as NOP insertion and
constant blinding [27, 25]. That said, Athanasakis et al. [2]
and Song et al. [43] have shown that the existing state-of-the-
art mitigations are only able to complicate gadget spraying,
but not prevent it altogether. Internet Explorer’s Chakra engine,
for instance, which is the most advanced in terms of employed
protections, uses NOP insertion and blinding of 4-byte con-
stants, both of which have already been circumvented. We also
note that constant blinding does not hinder JIT-cloning, as we
can determine, at runtime, exactly where those randomized
constants are located in the first copy of the JIT region and
subsequently ignore those gadgets when making use of the
second region.

Although the insertion of NOPs may shift the locations of
generated gadgets within a segment, the sequence of gadgets

TABLE I
THE TOTAL GADGETS DISCOVERED, AS WELL AS THE NUMBER OF GADGETS THAT ARE AVAILABLE TO AN ATTACKER AFTER DESTRUCTIVE CODE READS

(i.e., GADGETS THAT ARE NOT IN THE NORMAL PROGRAM EXECUTION PATH).

Gadget
Engine

Gadget
Type(s)

d3d10warp.dll
(% available)

urlmon.dll
(% available)

vgx.dll
(% available)

42 of 109 libraries
reachable from vgx.dll
(% available)

ROPSHELL Unique 86% 96% 98% 77%

JIT-ROP

MovRegG 60% 100% 93% 76%
LoadRegG 82% 97% 97% 78%

LoadMemG 75% 100% 100% 84%
StoreMemG 54% 100% 100% 63%

ArithmeticLoadG 91% 100% 90% 67%
ArithmeticStoreG 85% 92% 97% 51%

ArithmeticG 73% 100% 98% 64%
StackPivotG 100% 100% 100% 76%

JumpG 96% 100% 100% 70%
Can build payload? Yes (manual) Yes (manual) Yes (manual) Yes (automatic)

within the segment remains the same. By leveraging multiple
copies of the same generated code, our attack can destructively
read the generated code until the preamble of a gadget—which
is known in advance—is found. Destroying some gadgets of
interest during this process is not a problem, as they can be
located in other JIT’ed copies of the same generated code
by following the same strategy. At the same time, constant
blinding of only 4-byte constants leaves enough room for the
generation of useful gadgets by exploiting 1-byte and 2-byte
constants, and overlapping instructions [2]. Simply extending
constant blinding to smaller constants is not an attractive
solution, as the associated overhead has been shown to be
prohibitively high [2]. Additionally, Evans et al. [20] and
Carlini et al. [14] have shown that protections based on CFI at
the JIT engine level [34] may still allow an attacker to generate
enough permitted control flow paths for the construction of a
functional ROP payload.

B. On Reloaded Code Gadgets Available

We now turn our attention to the feasibility of our attacks
leveraging the lack of code persistence in destructive code
reads, namely the library reload and process reload attacks
described in section §V. These attacks more closely follow the
original methodology of just-in-time code reuse attacks in that
we leak an initial code pointer from a virtual function pointer
table (vtable) by leveraging a memory disclosure attack, then
proceed to disclose gadgets in that library module. Note,
however, that in the case of shared library reloads, we are
limited to disclosing only those gadgets within the libraries
we can load and unload. That is, disclosing any other bytes
of code will leave that code destroyed with no way to restore
it to it’s original form. Thus, Table I provides an analysis of
the gadgets available in the specific libraries we control in our
example attack (d3d10warp.dll and urlmon.dll).

Specifically, we analyzed gadgets in the libraries with both
the ROPSHELL3 gadget engine and the JIT-ROP gadget
engine. Examining those unique gadgets more closely, we
found a number of useful gadgets in each category in both

3See the interface available at ropshell.com.

libraries. Note that even after eliminating those gadgets located
in execution paths for loading and unloading the libraries, we
can still identify gadgets of each type. Unfortunately, even
with all gadget types being available, the JIT-ROP compiler
was unable to automatically generate a payload using only the
gadgets identified in each distinct library. However, we were
able to construct functional code reuse payloads by inspecting
the available gadget set and manually chaining together gad-
gets in ways not supported by the automated compiler. One
could, of course, update the JIT-ROP compiler to recognize
and make use of those combinations automatically.

Fig. 10. The number of gadgets found in each JIT-ROP category across all
reachable libraries that are also available for disclosure (i.e., those gadgets
that are not executed during normal program execution).

Our process reload technique is much more flexible in terms
of where gadgets may be disclosed than the library reload
attack. That is, we may recursively disclose gadgets in any
library that the initially disclosed library depends upon. To do
so, we simply follow function pointers in the module’s import
section to navigate to new shared library modules. Indeed,
we found that when using vgx.dll as the starting point (as
given by the specific exploit we used), we could ultimately
navigate to 42 of the 109 loaded libraries by recursively

following imports using the same memory disclosure. Table I
also reports both the gadgets found in vgx.dll as well as
the cumulative percent of gadgets available in all reachable
(and loaded) libraries.

LoadReg: | pop edi | ret
(value to load)

LoadReg: | pop esi | ret
(value to load)

LoadReg: | pop ebp | retn 0xc
(value to load)
(padding)
(padding)
(padding)

LoadReg: | pop ebx | ret
(value to load)

PushA: LOADLIBRARYW* | pusha | ret
String data (’kernel32’)
String data
String data
String data
String data

LoadReg: | pop edi | ret
(value to load)

LoadReg: | pop esi | ret
(value to load)

MovReg: | xchg eax,ebp | ret
LoadReg: | pop ebx | ret

(value to load)
PushA: GETPROCADDRESS* | pusha | ret

String data (’WinExec’)
String data

LoadReg: | pop edi | ret
(value to load)

MovReg: | xchg eax,esi | ret
LoadReg: | pop ebp | retn 0xc

(value to load)
(padding)
(padding)
(padding)

LoadReg: | pop ebx | ret
(value to load)

LoadReg: | pop edx | retn 0x8
(value to load)
(padding)
(padding)

PushA: WINEXEC* | pusha | ret
String data (’calc’)
String data

Listing 2. High-level representation of the ROP payload automatically
generated by JIT-ROP using gadgets available in the reachable libraries.

The disclosure of only the initial shared library, vgx.dll,
yields results similar to that of the shared library reload
technique. We observe significantly more gadgets when con-
sidering that, in practice, the adversary will be able to disclose
the code of all libraries dependent on that initial library. As
shown in Table I and Figure 10, we are able to identify a
plethora of gadgets in each of the requisite categories that are
useful for building a malicious code reuse payload. Indeed, the
JIT-ROP compiler is able to automatically construct a code
reuse payload in this case that launches the calculator process
and cleanly exits the exploited process. Listing 2 depicts one
of the many possible payloads that could be automatically
generated by the JIT-ROP compiler. In short, each line of the
listing represents one 8-byte value to be loaded on the program
stack after a control-flow hijacking followed by a stack pivot.

Gadgets execute, in order, from the first line to the last, with
data and padding intermingled between the gadget pointers.

The most important take-away of Table I and Figure 10,
however, is not the number of gadgets and types that we are
able to identify in this particular exploit instance, or even
whether we are able to build a payload from those gadgets.
Indeed, one can likely discover more gadgets using different
techniques from those employed in this paper, such as using
jump [10] or call-oriented programming [13] or use more
sophisticated techniques for identifying standard ROP gadgets
with or without side-effects. Instead, our results conservatively
describe the effectiveness of destructive code reads empirically
by noting the average reduction of gadgets across all of these
experiments.

In doing so we conclude that, conservatively, destructive
code reads offer only a 30% reduction in the gadgets available
to the attacker, and this reduction is wholly attributable to
eliminating gadgets that exist within the normal program
execution path. That is, disclosing a gadget located in the
normal program execution path results in the destruction of
that code, and ultimately the program crashes before an exploit
can complete.

C. On Implicit Code Reads

To assess the feasibility of implicit code disclosure against
the in-place code randomization technique of Pappas et al.
[35], we evaluated how many randomized gadgets can be
implicitly read by following the inference strategy outlined in
Section IV-D. As discussed, the effectiveness of implicit dis-
closure in the face of instruction substitution and basic block
instruction reordering depends on multiple factors related to
the specifics of the particular randomized gadget, including
(but not limited to) the size of the basic block in which it is
contained and the location of substitutable instructions.

Due to the complexity involved in that analysis, and more
importantly, the lower coverage of those two transformations,
we opted instead to focus on register reassignment and reg-
ister preservation code reordering. Given the nature of these
two transformations, precise inference of the state of these
randomized gadgets is always possible without having to
destructively read even a single byte of the gadget being
revealed—only memory locations preceding the actual gadget
must be disclosed.

As an example, Figure 11 shows the bytes of the randomized
instance of the code depicted in Figure 8. By destructively
reading just two bytes, corresponding to the two out of the
three instructions that can be reordered at the function’s
prologue, an attacker can infer the values of the randomized
bytes at the function’s epilogue, i.e., which of the six possible
orderings of the pop instructions of the gadget is actually
used. Similarly, as shown in Figure 12 (which corresponds to
the example of Figure 9), by destructively reading just a single
byte, an attacker can infer which of the two possible register
operand combinations are used in the gadget.

For our empirical analyses, we used a set of 47 libraries
from Adobe Reader v9.3 and Adobe Acrobat Reader DC,

57 53 56 89 5E 5B 5F C3

Destructive Reads (2 bytes) Inferred Bytes

CB

push edi

push ebx

push esi

mov ebx,ecx

pop esi

pop ebx

pop edi

ret

Fig. 11. Destructively reading two bytes in the function’s prologue allows an
attacker to infer the values of the randomized bytes of the gadget, i.e., which
of the six possible orderings of the pop instructions actually used.

50 8B 45 08 8D 4D FC 51 50 FF D7

push eax

eaxmov ,[ebp+0x8]

lea ecx,[ebp-0x4]

push ecx

push eax

call edi

Destructive Read (1 byte) Inferred Bytes

Fig. 12. Destructively reading a single byte in an instruction that involves
a reassigned register allows an attacker to infer the state of the randomized
gadget.

which in total contain 628,907 gadgets. We used the publicly
available implementation of in-place code randomization [35]
to randomize the libraries. Figure 13 shows the percentage of
gadgets that can be randomized by each of the four randomiza-
tion techniques. Note that a given gadget can be randomized
by more than one technique. The combination of all techniques
randomizes 78.28% of all gadgets found in the analyzed
code. We found that similar to the results reported by Pappas
et al. [35], instruction substitution and basic block instruction
reordering achieve the lowest randomization coverage (21.43%
and 33.98%, respectively).

The two more effective transformations, which happen to
always allow for implicit code disclosure, achieve a combined
coverage of 68.72%. In other words, by focusing only on reg-
ister reassignment and register preservation code reordering,
an attacker can infer the state of 90.44% of all randomized
gadgets (i.e., including the 21.72% of the gadgets that cannot
be randomized by any of the transformations of Pappas et al.
[35]). Based on these results, and considering that further
inference against instruction substitution and basic block re-
ordering is likely possible, we conclude that in-place code
randomization is not sufficient for use in conjunction with
binary-level execute-only memory protections.

Randomized gadgets (%)

0 10 20 30 40 50 60 70 80

(A) Instruction Substitution

(B) Instruction Reordering

(C) Register Reassignment

(D) Reg. Preserv. Reordering

Inferable gadgets (C ∪ D)

All (A ∪ B ∪ C ∪ D)

Fig. 13. Randomization coverage achieved by the different transformations of
in-place code randomization. The state of randomized gadgets due to register
reassignment (C) and register preservation code reordering (D) can always be
inferred through indirect disclosure. This means that an extra 68.72% of all
gadgets (C ∪ D) can be safely used by an attacker.

VI. DISCUSSION AND POSSIBLE MITIGATIONS

Many of the problems associated with binary-compatible
execute-only or destructive read mitigations can be solved by
using source and compiler-level techniques. For instance, the
work of Crane et al. [16] provides an execute-only primitive
and fully separates code and data at the compiler-level, which
eliminates the need for destructive reads. Unfortunately, these
techniques require one to either recompile open source soft-
ware (instead of using the binary distribution) or leave end-
users at the mercy of application developers for closed-source
software. Binary-compatible mitigations instead transparently
mitigate attacks on the (closed or open source) applications
that are already in use. We believe the development and
wide-spread adoption of mitigation tools such as Microsoft’s
Enhanced Mitigation Experience Toolkit (EMET) [33] aptly
demonstrate the demand for binary-compatible mitigations.

Clearly, moving forward, any security analysis of binary-
level execute-only memory protections that rely on destruc-
tive code reads must take into consideration the underlying
guarantees of the code diversification technique being relied
upon. Given that achieving complete randomization coverage
(e.g., using basic block reordering [47]) is challenging for
complex closed-source applications (which systems such as
Heisenbyte [45] and NEAR [48] are meant to protect), best-
effort techniques such as in-place code randomization are
the only available options. Sadly, as our results have shown,
such schemes are not sufficient when destructive reads are the
principal protection limiting the partial inference of code bytes.
Other protections are needed. Thus, we hope that this work
motivates the need for additional research into more advanced
binary-level code diversification techniques that can withstand
code association attacks of the types presented in this paper.

Fortunately, more straightforward solutions are in reach
for mitigating the attacks that exploit code non-persistence
via library reloads. The simplest solution is to disallow the
unloading of libraries, even if doing so comes at a price
of higher memory utilization and less flexibility for complex
applications. An alternative, but more difficult, solution would

be to re-randomize each time a library is loaded. Of course,
such re-randomization would need to be performed in a way
that does not hinder one’s ability to support shared libraries.

More challenging still is the design and implementation of
practical techniques for re-randomizing all libraries each time
a process loads (for example, in a new browser tab). The use
of position independent code [30] will likely be required to
achieve that goal, though the challenges of supporting shared
libraries seem rather demanding. An alternative might be to
use the frameworks suggested by Crane et al. [17] and Bigelow
et al. [8] as a base for frequent re-randomizations. While these
approaches appear to offer at least one path forward, they
currently offer no support for closed-source applications.

VII. CONCLUSION

The emergence of JIT-ROP attacks that leverage memory
leak vulnerabilities to bypass code diversification protections
has prompted active research on defenses that enforce execute-
only memory, which prevents the runtime disclosure of code
by prohibiting read accesses on executable memory. From a
practical perspective, only a few of those approaches [45, 4]
can be applied for the protection of the complex COTS pro-
grams that are being targeted by current in-the-wild exploits,
such as closed-source browsers and document viewers.

In this paper, we show that the recently proposed notion
of destructive code reads [45, 48], which enforces a relaxed
property of allowing data reads from executable memory, but
prevents the subsequent execution of previously read data,
is at best fragile. Although this approach seemingly strikes
a balance between compatibility with complex binaries and
protection against runtime code disclosure attacks, giving an
attacker the ability to perform reads even in a destructive way
is enough to undermine any offered protection.

To demonstrate this, we presented four ways in which an
attacker can pinpoint the location and state of gadgets. In
particular, code cloning via JIT code generation and code
non-persistence via shared library or process reloading rely
on destructively reading copies of generated or existing code,
allowing the reuse of gadgets that have not been previously
read, while code inference relies on reading preceding bytes
related to the randomized state of gadgets. These techniques
highlight the need for further research in binary-compatible
code randomization schemes tailored for use in conjunction
with execute-only memory protection, that will prevent gadget
inference through code cloning or implicit reads.

VIII. ACKNOWLEDGMENTS

We express our gratitude to Nathan Otterness, Micah Mor-
ton and Teryl Taylor for insightful discussions. We also thank
the anonymous reviewers for their suggestions on how to im-
prove the paper. This work is supported in part by the National
Science Foundation under awards 1421703 and 1127361 (with
a supplement from the Department of Homeland Security
under its Transition to Practice program), and the Office of
Naval Research under award N00014-15-1-2378. Any opin-
ions, findings, and conclusions or recommendations expressed

herein are those of the authors and do not necessarily reflect
the views of the National Science Foundation, the Department
of Homeland Security, or the Office of Naval Research.

REFERENCES

[1] “Intercom: Cross-window message broadcast interface.”
[Online]. Available: https://github.com/diy/intercom.js

[2] M. Athanasakis, E. Athanasopoulos, M. Polychronakis,
G. Portokalidis, and S. Ioannidis, “The devil is in the
constants: Bypassing defenses in browser JIT engines,” in
Symposium on Network and Distributed System Security,
2015.

[3] M. Backes and S. Nürnberger, “Oxymoron: Making fine-
grained memory randomization practical by allowing
code sharing,” in USENIX Security Symposium, 2014, pp.
433–447.

[4] M. Backes, T. Holz, B. Kollenda, P. Koppe,
S. Nürnberger, and J. Pewny, “You can run but
you can’t read: Preventing disclosure exploits in
executable code,” in ACM Conference on Computer and
Communications Security, 2014, pp. 1342–1353.

[5] A. Barresi, K. Razavi, M. Payer, and T. R. Gross,
“Cain: Silently breaking ASLR in the cloud,” in USENIX
Workshop on Offensive Technologies, 2015.

[6] E. Bhatkar, D. C. Duvarney, and R. Sekar, “Address
obfuscation: an efficient approach to combat a broad
range of memory error exploits,” in USENIX Security
Symposium, 2003, pp. 105–120.

[7] S. Bhatkar, R. Sekar, and D. C. DuVarney, “Efficient
techniques for comprehensive protection from memory
error exploits,” in USENIX Security Symposium, 2005,
pp. 17–17.

[8] D. Bigelow, T. Hobson, R. Rudd, W. Streilein, and
H. Okhravi, “Timely rerandomization for mitigating
memory disclosures,” in ACM Conference on Computer
and Communications Security, 2015, pp. 268–279.

[9] D. Blazakis, “Interpreter exploitation,” in USENIX Work-
shop on Offensive Technologies, 2010, pp. 1–9.

[10] T. K. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang,
“Jump-oriented programming: a new class of code-reuse
attack.” in ACM Asia Conference on Computer and
Communications Security, 2011, pp. 30–40.

[11] K. Braden, S. Crane, L. Davi, M. Franz, P. Larsen,
C. Liebchen, and A.-R. Sadeghi, “Leakage-resilient lay-
out randomization for mobile devices,” in Symposium on
Network and Distributed System Security, 2016.

[12] S. Brookes, R. Denz, M. Osterloh, and S. Taylor, “Ex-
oshim: Preventing memory disclosure using execute-
only kernel code,” in International Conference on Cyber
Warfare and Security, 2016, p. To appear.

[13] N. Carlini and D. Wagner, “ROP is still dangerous:
Breaking modern defenses,” in USENIX Security Sym-
posium, 2014, pp. 385–399.

[14] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R.
Gross, “Control-flow bending: On the effectiveness of

control-flow integrity,” in USENIX Security Symposium,
2015, pp. 161–176.

[15] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi,
H. Shacham, and M. Winandy, “Return-oriented pro-
gramming without returns,” in ACM Conference on Com-
puter and Communications Security, 2010, pp. 559–572.

[16] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen,
A.-R. Sadeghi, S. Brunthaler, and M. Franz, “Readactor:
Practical code randomization resilient to memory disclo-
sure,” in IEEE Symposium on Security and Privacy, 2015,
pp. 763 – 780.

[17] S. J. Crane, S. Volckaert, F. Schuster, C. Liebchen,
P. Larsen, L. Davi, A.-R. Sadeghi, T. Holz, B. De Sut-
ter, and M. Franz, “It’s a trap: Table randomization
and protection against function-reuse attacks,” in ACM
Conference on Computer and Communications Security,
2015, pp. 243–255.

[18] L. Davi, C. Liebchen, A.-R. Sadeghi, K. Z. Snow, and
F. Monrose, “Isomeron: Code randomization resilient to
(just-in-time) return-oriented programming,” in Sympo-
sium on Network and Distributed System Security, 2015.

[19] L. V. Davi, A. Dmitrienko, S. Nürnberger, and A.-R.
Sadeghi, “Gadge me if you can: Secure and efficient ad-
hoc instruction-level randomization for x86 and ARM,”
in ACM Asia Conference on Computer and Communica-
tions Security, 2013, pp. 299–310.

[20] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard,
H. Okhravi, and S. Sidiroglou-Douskos, “Control jujutsu:
On the weaknesses of fine-grained control flow integrity,”
in ACM Conference on Computer and Communications
Security, 2015, pp. 901–913.

[21] J. Gionta, W. Enck, and P. Ning, “Hidem: Protecting the
contents of userspace memory in the face of disclosure
vulnerabilities,” in ACM Conference on Data and Appli-
cation Security and Privacy, 2015, pp. 325–336.

[22] H. Gisbert and I. Ripoll, “On the effectiveness of nx,
ssp, renewssp, and aslr against stack buffer overflows,”
in IEEE International Symposium on Network Computing
and Applications, 2014, pp. 145–152.

[23] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum, “En-
hanced operating system security through efficient and
fine-grained address space randomization,” in USENIX
Security Symposium, 2012, pp. 475–490.

[24] J. D. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and
J. W. Davidson, “ILR: Where’d my gadgets go?” in IEEE
Symposium on Security and Privacy, 2012, pp. 571–585.

[25] A. Homescu, S. Brunthaler, P. Larsen, and M. Franz,
“Librando: transparent code randomization for just-in-
time compilers,” in ACM Conference on Computer and
Communications Security, 2013, pp. 993–1004.

[26] R. Hund, C. Willems, and T. Holz, “Practical timing side
channel attacks against kernel space ASLR,” in IEEE
Symposium on Security and Privacy, May 2013, pp. 191–
205.

[27] A. Jangda, M. Mishra, and B. De Sutter, “Adaptive just-
in-time code diversification,” in Proceedings of the Sec-

ond ACM Workshop on Moving Target Defense (MTD),
2015, pp. 49–53.

[28] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning, “Address
space layout permutation (ASLP): Towards fine-grained
randomization of commodity software,” in Annual Com-
puter Security Applications Conference, 2006, pp. 339
–348.

[29] H. Koo and M. Polychronakis, “Juggling the gadgets:
Binary-level code randomization using instruction dis-
placement,” in ACM Asia Conference on Computer and
Communications Security, May 2016.

[30] J. R. Levine, Chapter 8: Loading and overlays. Linkers
and Loaders. San Francisco: Morgan-Kauffman, 1999.

[31] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,
J. Mitchell, and M. Horowitz, “Architectural support for
copy and tamper resistant software,” in International
Conference on Architectural Support for Programming
Languages and Operating Systems, 2000, pp. 168–177.

[32] L. Liu, J. Han, D. Gao, J. Jing, and D. Zha, “Launching
return-oriented programming attacks against randomized
relocatable executables,” in IEEE International Confer-
ence on Trust, Security and Privacy in Computing and
Communications, 2011, pp. 37 – 44.

[33] Microsoft, “The enhanced mitigation experience toolkit.”
2016. [Online]. Available: https://support.microsoft.com/
en-us/kb/2458544/

[34] B. Niu and G. Tan, “Rockjit: Securing just-in-time com-
pilation using modular control-flow integrity,” in ACM
Conference on Computer and Communications Security,
2014, pp. 1317–1328.

[35] V. Pappas, M. Polychronakis, and A. D. Keromytis,
“Smashing the gadgets: Hindering return-oriented pro-
gramming using in-place code randomization,” in IEEE
Symposium on Security and Privacy, 2012, pp. 601–615.

[36] C. Rohlf and Y. Ivnitskiy, “The security challenges of
client-side just-in-time engines,” IEEE Security & Pri-
vacy, vol. 10, no. 2, pp. 84–86, March/April 2012.

[37] C. Rohlf and Y. Ivnitskiy, “Attacking clientside JIT
compilers,” in Black Hat USA, 2011.

[38] F. J. Serna, “The info leak era on software exploitation,”
in Black Hat USA, 2012.

[39] F. J. Serna, “Flash JIT - spraying for info leak gadgets,”
2013.

[40] H. Shacham, “The geometry of innocent flesh on the
bone: Return-into-libc without function calls (on the
x86),” in ACM Conference on Computer and Commu-
nications Security, 2007, pp. 552–561.

[41] H. Shacham, E. jin Goh, N. Modadugu, B. Pfaff, and
D. Boneh, “On the effectiveness of address-space ran-
domization,” in ACM Conference on Computer and Com-
munications Security, 2004, pp. 298–307.

[42] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko,
C. Liebchen, and A.-R. Sadeghi, “Just-in-time code
reuse: On the effectiveness of fine-grained address space
layout randomization,” in IEEE Symposium on Security
and Privacy, 2013, pp. 574–588.

[43] C. Song, C. Zhang, T. Wang, W. Lee, and D. Melski,
“Exploiting and protecting dynamic code generation,” in
Symposium on Network and Distributed System Security,
2015.

[44] A. Sotirov and M. Dowd, “Bypassing browser memory
protections in Windows Vista,” 2008.

[45] A. Tang, S. Sethumadhavan, and S. Stolfo, “Heisenbyte:
Thwarting memory disclosure attacks using destructive
code reads,” in ACM Conference on Computer and
Communications Security, 2015, pp. 256–267.

[46] R. Wartell, Y. Zhou, K. W. Hamlen, M. Kantarcioglu,
and B. Thuraisingham, “Differentiating code from data
in x86 binaries,” in Proceedings of the European Con-
ference on Machine Learning and Knowledge Discovery
in Databases, 2011, pp. 522–536.

[47] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin, “Binary
stirring: Self-randomizing instruction addresses of legacy
x86 binary code,” in ACM Conference on Computer and
Communications Security, 2012, pp. 157–168.

[48] J. Werner, G. Baltas, R. Dallara, N. Otterness, K. Z.
Snow, F. Monrose, and M. Polychronakis, “No-execute-
after-read: Preventing code disclosure in commodity
software.” in ACM Asia Conference on Computer and
Communications Security, 2016.

