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Abstract. In this paper we describe attacks on PKCS#11 devices that we
successfully mounted by interacting with the low-level APDU protocol, used
to communicate with the device. They exploit proprietary implementa-
tion weaknesses which allow attackers to bypass the security enforced at
the PKCS#11 level. Some of the attacks leak, as cleartext, sensitive crypto-
graphic keys in devices that were previously considered secure. We present
a new threat model for the PKCS#11 middleware and we discuss the new
attacks with respect to various attackers and application configurations.
All the attacks presented in this paper have been timely reported to man-
ufacturers following a responsible disclosure process.

1 Introduction

Cryptographic hardware such as USB tokens, smartcards and Hardware Security
Modules has become a standard component of any system that uses cryptog-
raphy for critical activities. It allows cryptographic operations to be performed
inside a protected, tamper-resistant environment, without the need for the appli-
cation to access the (sensitive) cryptographic keys. In this way, if an application
is compromised the cryptographic keys are not leaked, since their value is stored
securely in the device.

Cryptographic hardware is accessed via a dedicated API. PKCS#11 defines
the RSA standard interface for cryptographic tokens and is now administered
by the Oasis PKCS11 Technical Committee [14,15]. In PKCS#11, fresh keys are
directly generated inside devices and can be shared with other devices through
special key wrapping and unwrapping operations, that allow for exporting and
importing keys encrypted under other keys. For example, a fresh symmetric key
k can be encrypted (wrapped) by device d; under the public key of device ds and
then exported out of d; and imported (unwrapped) inside ds that will perform,
internally, the decryption. In this way, key k will never appear as cleartext out
of the devices. One of the fundamental properties of PKCS#11 is, in fact, that
keys marked as sensitive should never appear out of a device unencrypted.

In the last 15 years, several API-level attacks on cryptographic keys have
appeared in literature [1,3-6,9,12]. As pioneered by Clulow [6], the attributes of
a PKCS#11 key might be set so to give the key conflicting roles, contradicting the
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standard key separation principle in cryptography. For example, to determine
the value of a sensitive key k; given a second key ko, an attacker simply wraps
k1 using ko and decrypts the resulting ciphertext using ks once again. The fact
that a key should never be used to perform both the wrapping of other keys
and the decryption of arbitrary data (including wrapped keys) is not explicitly
stated in the specification of PKCS#11 and many commercial devices have been
recently found vulnerable to Clulow’s attack [5].

In this paper, we describe new, unpublished attacks that work at a different
API-level. The PKCS#11 API is typically implemented in the form of a middle-
ware which translates the high-level PKCS#11 commands into low-level ISO 7816
Application Protocol Data Units (APDUs) and exposes results of commands in the
expected PKCS#11 format. In our experiments, we noticed that this translation
is far from being a 1-to-1 mapping. Devices usually implement simple building
blocks for key storage and cryptographic operations, but most of the logic and,
in some cases, some of the sensitive operations are delegated to the middleware.

We have investigated how five commercially available devices implement var-
ious security-critical PKCS#11 operations, by analyzing in detail the APDU traces.
Our findings show that APDU-level attacks are possible and that four out of the
five analyzed devices leak symmetric sensitive keys in the clear, out of the device.
We also show that, under a reasonable attacker model, the authentication phase
can be broken, allowing for full access to cryptographic operations. Interestingly,
we found that most of the logic of PKCS#11 is implemented at the library level.
Key attributes that regulate the usage of keys do not have any importance at the
APDU-level and can be easily bypassed. For example, we succeeded performing
signatures under keys that do not have this functionality enabled at the PKCS#11
level. For one device, we also found that RSA session keys are managed directly
by the library in the clear violating, once more, the PKCS#11 basic requirement
that sensitive keys should never leave the token unencrypted.

The focus of this paper is primarily on USB tokens and smartcards, so our
threat model refers to a typical single-user desktop/laptop configuration. In par-
ticular, we consider various application configurations in which the PKCS#11 layer
and the authentication phase are run at different privileges with respect to the
user application. Protecting the PKCS#11 middleware turns out to be the only
effective way to prevent the APDU-level attacks that we discovered, assuming that
the attacker does not have physical access to the token. In fact, physical access
would enable USB sniffing, revealing any key communicated in the clear from/to
the token. Separating authentication (for example using a dialog running at a
different privilege) offers additional protection and makes it hard to use the
device arbitrarily through the PKCS#11 API. However, an attacker might still
attach to the process and mount a Man-In-The-Middle attack at the PKCS#11
layer, injecting or altering PKCS#11 calls.

Contributions. In this paper we present: (i) a new threat model for PKCS#11
middleware; (i7) new, unpublished APDU-level attacks on commercially available
tokens and smartcards, some of which were considered secure; (iii) a security
analysis of the vulnerabilities with respect to the threat model.
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Related work. Many API-level attacks have been published in the last 15 years.
The first one is due to Longley and Rigby [12] on a device that was later revealed
to be a Hardware Security Module manufactured by Eracom and used in the
cash machine network. In 2000, Anderson published an attack on key loading
procedures on another similar module manufactured by Visa [1] and presented
more attacks in two subsequent papers [3,4]. Clulow published the first attacks
on PKCS#11 in [6]. All of these attacks had been found manually or through
ad-hoc techniques. A first effort to apply general analysis tools appeared in
[20], but the researchers were unable to discover any new attacks and could
not conclude anything about the security of the device. The first automated
analysis of PKCS#11 with a formal statement of the underlying assumptions was
presented in [9]. When no attacks were found, the authors were able to derive
precise security properties of the device. In [5], the model was generalized and
provided with a reverse-engineering tool that automatically refined the model
depending on the actual behaviour of the device. When new attacks were found,
they were tested directly on the device to get rid of possible spurious attacks
determined by the model abstraction. The automated tool of [5] successfully
found attacks that leak the value of sensitive keys on real devices.

Low-level smartcard attacks have been studied before but no previous APDU-
level attacks and threat models for PKCS#11 devices have been published in
literature. In [2], the authors showed how to compromise the APDU buffer in
Java Cards through a combined attack that exploits both hardware and software
vulnerabilities. In [8], the authors presented a tool that gives control over the
smart card communication channel for eavesdropping and man-in-the-middle
attacks. In [13], the authors illustrated how a man-in-the-middle attack can
enable payments without knowing the card PIN.

In [10] a subset of the authors investigated an automated method to system-
atically reverse-engineer the mapping between the PKCS#11 and the APDU layers.
The idea is to provide abstract models in first-order logic of low level communi-
cation, on-card operations and possible implementations of PKCS#11 functions.
The abstract models are then refined based on the actual APDU trace, in order to
suggest the actual mapping between PKCS#11 commands and APDU traces. The
two papers complement each other: the present one illustrates real attacks with
a threat model and a security analysis, while [10] focuses on automating the
manual, non-trivial reverse engineering task. All of the attacks presented here
have been found manually and some of them have been used as test cases for
the automated tool of [10].

Finally, for what concerns the threat model, in the literature we find a number
of general methodologies (e.g., [17-19]) that do not directly apply to our setting.
In [7] the authors discussed threat modelling for security tokens in the setting of
web application while [16] described in details all the actors and threats for smart
cards, but none of these papers considered threats at the PKCS#11 middleware
layer. To the best of our knowledge, the threat model we propose in this work is
the first one in the setting of PKCS#11 tokens and smartcards which takes into
account the APDU layer as an attack entry point.
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Structure of the paper. The paper is organized as follows: in Sect.2 we give
background about the PKCS#11 and APDU layers; in Sect. 3 we present the threat
model; in Sect. 4 we illustrate in detail our findings on five commercially available
devices; in Sect. 5 we analyze the attacks with respect to the threat model and
in Sect. 6 we draw some concluding remarks.

2 Background

PKCS#11 defines the RSA standard interface for cryptographic tokens and is now
developed by the Oasis PKCS11 Technical Committee [14,15].

The PKCS#11 API is typically implemented in the form of a middleware which
translates the high-level PKCS#11 commands into low-level ISO 7816 Application
Protocol Data Units (APDUs) and exposes results of commands in the expected
PKCS#11 format. Thus, from an architectural perspective, the PKCS#11 middle-
ware can be seen as the combination of two layers: the PKCS#11 API and the
device API. All of the devices we have analyzed are based on the PC/SC speci-
fication for what concerns the low-level device API.! This layer is the one that
makes devices operable from applications and allows for communication with the
device reader, exposing both standard and proprietary commands, formatted as
ISO 7816 APDUs. In the following, we will refer to this layer as the APDU layer.

The PKCS#11 and the APDU layer are usually implemented as separate
libraries. As an example, in Windows systems PC/SC is implemented in the
winscard.dll library. Then, a separate, device-specific PKCS#11 library links to
winscard.dll in order to communicate with the device.

It is important to notice that, even if PC/SC provides a standard layer for
low-level communication, different devices implement the PKCS#11 API in var-
ious, substantially different ways. As a consequence, each device requires its
specific PKCS#11 library on top of the PC/SC one. Figure 1 gives an overview of
a typical PKCS#11 middleware architecture with two cards requiring two differ-
ent PKCS#11 libraries which communicates with the cards using the same PC/SC
library.

In Subsects. 2.1 and 2.2 we illustrate the PKCS#11 and the APDU layers more in
detail. Readers familiar with these layers can safely skip the following sections.

2.1 The PKCS#11 Layer

As well as providing access to cryptographic functions — such as encryption,
decryption, sign and authentication — PKCS#11 is designed to provide a high
degree of protection of cryptographic keys. Importing, exporting, creating and
deleting keys stored in the token should always be performed in a secure way.
In particular, the standard requires that even if the token is connected to an
untrusted machine, in which the operating system, device drivers or software
might be compromised, keys marked as sensitive should never be exported as
cleartext out of the device.

! http://www.pcscworkgroup.com/.
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Fig.1. PKCS#11 middleware for two PC/SC (winscard.dll) cards with different
PKCS#11 libraries.

In order to access the token, an application must authenticate by supplying a
PIN and initiate a session. Notice, however, that if the token is connected to an
untrusted machine the PIN can be easily intercepted, e.g., through a keylogger.
Thus, the PIN should only be considered as a second layer of protection and it
should not be possible to export sensitive keys in the clear even for legitimate
users, that know the PIN (cf. [15], Sect. 7).

PKCS#11 defines a number of attributes for keys that regulate the way keys
should be used. We briefly summarize the most relevant ones from a security
perspective (see [14,15] for more detail):

CKA_SENSITIVE the key cannot be revealed as plaintext out of the token. It
should be impossible to unset this attribute once it has been set, to avoid
trivial attacks;

CKA_EXTRACTABLE the key can be wrapped, i.e. encrypted, under other keys and
extracted from the token as ciphertext; unextractable keys cannot be reve-
lead out of the token even when encrypted. Similarly to CKA_SENSITIVE, it
should not be possible to mark a key as extractable once it has been marked
unextractable;

CKA_ENCRYPT, CKA_DECRYPT the key can be used to encrypt and decrypt arbi-
trary data;

CKA_WRAP, CKA_UNWRAP the key can be used to encrypt (wrap) and decrypt
(unwrap) other CKA_EXTRACTABLE, possibly CKA_SENSITIVE keys. These two
operations are used to export and import keys from and into the device;

CKA_SIGN, CKA_VERIFY the key can be used to sign and verify arbitrary data;

CKA_PRIVATE the key can be accessed even if the user is not authenticated to
the token when it is set to false;

CKA_TOKEN the key is not stored permanently on the device (discarded at the
end of the session) when it is set to false.
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0 /* Session initialization and loading of DESkey has been omitted ... */

1

2 CK_BYTE_PTR plaintext = " ", /* plaintext */

3 CK_BYTE iv[8] = {1, 2, 3, 4, 5, 6, 7, 8}; /* initialization vector */

4 CK_BYTE ciphertext[8]; /* ciphertext output buffer */

5 CK_ULONG ciphertext_len; /* ciphertext length */

6 CK_MECHANISM mechanism = {CKM_DES_CBC, iv, sizeof(iv)}; /* DES CBC mode with given iv */
7

8 /* Initialize the encryption operation with mechanism and DESkey */

9 C_EncryptInit(session, &mechanism, DESkey);

11 /* Encryption of the plaintext string into ciphertext buffer */
12 C_Encrypt(session, plaintext, strlen(plaintext), ciphertext, &ciphertext_lemn);

Listing 1.1. PKCS#11 DES/CBC encryption under key DESkey.

Ezample 1. (PKCS#11 symmetric key encryption). Listing 1.1 reports a fragment
of C code performing symmetric DES/CBC encryption of plaintext "AAAAAAAA"
with initialization vector 0x0102030405060708. PKCS#11 session has already
been initiated and session contains a handle to the active session. We also
assume that DESkey is a valid handle to a DES encryption key.

We can see that C_EncryptInit initializes the encryption operation by
instantiating the DES/CBC cryptographic mechanism and the cryptographic key
DESkey. Then, C_Encrypt performs the encryption of the string plaintext and
stores the result and its length respectively in ciphertext and ciphertext_len.
In order to keep the example simple, we skipped checks for errors that should
be performed after every PKCS#11 API call (cf. [15], Sect. 11). In Subsect. 2.2 we
will show how this example is mapped in APDUs on one token.

2.2 The APDU Layer

The ISO/IEC 7816 is a standard for identification, integrated circuit cards. Orga-
nization, security and commands for interchange are defined in part 4 of the
standard [11]. The communication format between a smartcard and an off-card
application is defined in terms of Application Protocol Data Units (APDUs). In
particular, the half-duplex communication model is composed of APDU pairs:
the reader sends a Command APDU (C-APDU) to the card which replies with a
Response APDU (R-APDU). The standard contains a list of inter-industry com-
mands whose behaviour is specified and standardized. Manufacturers can inte-
grate these standard commands with their own proprietary commands.

A C-APDU is composed of a mandatory 4-byte header (CLA,INS,P1,P2), and
an optional payload (Lc,data,Le), described below:

CLA one byte referring to the instruction class which specifies the degree of
compliance to ISO/IEC 7816 and whether the command and the response are
inter-industry or proprietary. Typical values are 0x00 and 0x80, respectively
for inter-industry and proprietary commands;

INS one byte representing the actual command to be executed, e.g. READ
RECORD;
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o # The challenge-response authentication is omitted. For details see
Subsect. 4.1

2 # IS0-7816 SELECT FILE command to select the folder (DF) where the
key is stored

APDU: 00 a4 04 Oc 00 00 06 50 55 42 4c 49 43

SW: 90 00

# IS0-7816 SELECT FILE command to select the file (EF) containing the

encryption key

6 APDU: 00 a4 02 Oc 00 00 02 83 01

7 SW: 90 00

s # Encryption of the plaintext (red/italic) using the selected key and

the given IV (green/overlined). The ciphertext is returned by

the token (blue/underlined).

o APDU: 80 16 00 01 00 00 10 01 02 03 04 05 06 07 08
41 41 41 41 41 41 41 41 00 00

10 SW: d2 ef a5 06 92 64 44 13 90 00

[SN|]

Listing 1.2. APDU session trace of the PKCS#11 symmetric key encryption.columns

P1,P2 two bytes containing the instruction parameters for the command, e.g.
the record number /identifier;

Lc one or three bytes, depending on card capabilities, containing the length of
the optional subsequent data field;

data the actual Lc bytes of data sent to the card;

Le one or three bytes, depending on card capabilities, containing the length
(possibly zero) of the expected response.

The R-APDU is composed of an optional Le bytes data payload (absent when Le
is 0), and a mandatory 2-bytes status word (SW1,SW2). The latter is the return
status code after command execution (e.g. FILE NOT FOUND).

Ezample 2. (Symmetric Key Encryption in APDUs). We show how the PKCS#11
code of Example 1 is mapped into APDUs on the Athena ASEKey USB token.
Notice that this token performs a challenge-response authentication before any
privileged command is executed. For simplicity, we omit the authentication part
in this example but will discuss it in detail in Sect. 4.1.

The encryption operation begins by selecting the encryption key from the
right location in the token memory: at line 3, the token selects the directory
(called Dedicated File in ISO-7816) and, at line 6, the file (Elementary File)
containing the key. At line 9, the encryption is performed: the Initialization Vec-
tor and the plaintext are sent to the token which replies with the corresponding
ciphertext.

We describe in detail the APDU format specification of SELECT FILE com-
mand at line 3:

CLA value 0x00 indicates that the command is ISO-7816 inter-industry;
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INS value 0xA4 corresponds to inter-industry SELECT FILE (cf. [11], Sect.6);

P1 value 0x04 codes a direct selection of a Dedicated File by name;

P2 value 0x0C selects the first record, returning no additional information about
the file;

Lc the tokens is operating in extended APDU mode, thus this field is 3 bytes
long. Value 0x000006 indicates the length 6 of the subsequent field;

data contains the actual ASCII-encoded name (“PUBLIC”) of the DF to be
selected;

SW1,SW2 the status word 0x90 0x00 returned by the token indicates that the
command was successfully executed.

It is important to notice that the C_EncryptInit function call sends no APDU to
the token: we can infer that the low level protocol of the encryption operation
is stateless and the state is managed inside the PKCS#11 library. This example
shows that the mapping between the PKCS#11 layer and the APDU layer is not
1-to-1 and the PKCS#11 library is in some cases delegated to implement critical
operations, such as maintaining the state of encryption. We will see how this
leads to attacks in Sect. 4.

3 Threat Model

In this section we analyze various threat scenarios and classify them based on
the attacker capabilities.

We consider a typical scenario in which the target token is connected to a
desktop or laptop computer running in a single-user configuration. We describe
the threat model by focusing on the following sensitive targets:

PIN If the attacker discovers the PIN he might be able to perform cryptographic
operations with the device when it is connected to the user’s host or in case
he has physical access to it;

Cryptographic operations The attacker might try to perform cryptographic
operations with the token, independently of his knowledge of the PIN;

Cryptographic keys The attacker might try to learn sensitive keys either by
exploiting PKCS#11 API-level attacks such as Clulow’s wrap-and-decrypt [6]
(cf. Subsect.2.1) or by exploiting the new APDU-level vulnerabilities we will
discuss in Sect. 4.

3.1 Administrator Privileges

If the attacker has administration privileges, he basically has complete control of
the host. He can modify the driver, replace the libraries, intercept any input for
the users and attach to any running process?. As such, he can easily learn the
PIN when it is typed or when it is sent to the library, use the PIN to perform
any cryptographic operations and exploit any PKCS#11 or APDU level attacks to
extract cryptographic keys in the clear.

2 This is typically done by using the operating system debug API to instrument or
inspect the target process memory. Examples are the Event Tracing API for Windows
and the Linux ptrace() syscall.
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3.2 User Privileges

The most common situation is when the attacker has user privileges. In this case
we have different scenarios:

Monolithic. The application is run by the same user as the attacker and directly
links both the PKCS#11 and the APDU library. The attacker can easily sniff and
alter data by attaching to the application process and by intercepting library
calls. The attacker can easily learn the PIN when it is sent to the library, use
the PIN to perform any cryptographic operations and exploit any PKCS#11 or
APDU level attacks to extract cryptographic keys in the clear.

Separate Authentication Mechanism. The application is run by the same
user as the attacker and directly links the PKCS#11 library but authentication
is managed by a separate software or hardware which is not directly accessible
with user privileges. Examples could be a separate dialog for entering the PIN
running at different privileges or some biometric sensor integrated in a USB
token. The attacker cannot directly log into the token but can still sniff and
alter data by attaching to the application process and by intercepting library
calls. If the attacker is able to place in the middle and alter data, he could
additionally exploit PKCS#11 or APDU-level attacks to extract cryptographic keys
in the clear. Notice that, knowing the PIN, this can be done by simply opening
a new independent session. Without knowledge of the PIN, instead, the attacker
needs a reliable Man-In-The-Middle (MITM) attack.

Separate Privileges. If the middleware layer is run as separate process at a
different privilege level, the attacker cannot attach to it and observe or alter
APDUs. The attacker can still try to access the token directly, so if there are ways

Table 1. Threats versus attackers and applications.

Attacker Application Attacker Attacker can exploit
can access
APDU APDU
PKCS#11| APDU PIN |PKCS#11 passive | active
Admin |Any v v v v v v
Monolithic v v v v v v
User Sep. Auth. v v X /! v /T
Sep. Privileges v X v v X X
Sep. Auth.&Priv. v X X Ve X X
Physical |Any X v e /1 /3 /13

! Requires MITM.
,2 Through a keylogger or a USB sniffer.
3 Only APDU payloads, cannot access middleware memory.
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to bypass authentication he might be able to perform cryptographic operations
and exploit PKCS#11 or APDU-level attacks.

3.3 Physical Access

If the attacker has physical access to the user host he might install physical key-
loggers and USB sniffers. This is not always feasible for example if the devices
are integrated, as in laptops. In the case of a key-logger, the attacker can easily
discover the PIN if it is typed through the keyboard. The case of directly sniff-
ing APDUs passing, e.g., through USB, is interesting and more variegated since
different sensitive data could be transmitted through the APDU layer, as we will
illustrate in Sect. 4.

3.4 Summary of the Threat Model

Table 1 summarizes what the various attackers can access and exploit in different
settings. We distinguish between passive APDU attacks, where the attacker just
sniffs the APDU trace, and active APDU attacks, where APDUs are injected or altered
by the attacker. In some cases active APDU attacks require mounting a MITM,
e.g., when the PIN is now known or when the attacker does not have access to
the middleware, as in physical attacks.

We point out that, if the application is monolithic, an attacker with user privi-
leges is as powerful as one with administrative privileges. The maximum degree of
protection is when the application offers separate authentication and the middle-
ware runs with different privileges. We notice that the attacker can still perform
PKCS#11-level attacks without knowing the PIN by mounting a MITM and alter-
ing or hijacking the API calls. Finally, physical attacker can in principle perform all
the attacks, except the ones that are based on inspecting process (or middleware)
memory and assuming, in some cases, MITM capabilities.

4 APDU-Level Attacks on Real Devices

We have tested the following five devices from different manufacturers for pos-
sible APDU-level vulnerabilities.

— Aladdin eToken PRO (USB)

— Athena ASEKey (USB)

— RSA SecurID 800 (USB)

Safesite Classic TPC IS V1 (smartcard)
— Siemens CardOS V4.3b (smartcard)

For readability, in the following we will refer to the above tokens and smart-
cards as eToken PRO, ASEKey, SecurID, Safesite Classic and Siemens CardOS,
respectively. These five devices are the ones tested in [5] for which we could find
APDU-level attacks. It is worth noticing that we could not inspect the APDU traces
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of some other devices analyzed in [5] because they encrypt the APDU-level com-
munication. We leave the study of the security of encrypted APDUs as a future
work.

We have systematically performed various tests on selected sensitive oper-
ations and we have observed the corresponding APDU activity. We have found
possible vulnerabilities concerning the login phase (Subsect. 4.1), symmetric sen-
sitive keys (Subsect. 4.2), key attributes (Subsect. 4.3), private RSA session keys
(Subsect. 4.4).

Quite surprisingly, we have found that, in some cases, cryptographic keys
appear as cleartext in the library which performs cryptographic operations in
software. Moreover, we have verified that the logic behind PKCS#11 key attributes
is, in most of the cases, implemented in the library. We have also found that all
devices are vulnerable to attacks that leak the PIN if the middleware is not
property isolated and run with a different privilege (which is usually not the
case). Moreover, attackers with physical access could sniff an authentication
session through the USB port and brute-force the PIN once the authentication
protocol has been reverse-engineered.

Our findings have been timely reported to manufacturers following a respon-
sible disclosure process and are described in detail in the following subsec-
tions. Official answers from manufacturers, if any, will be made available at
https://secgroup.dais.unive.it/projects/apduattacks/.

4.1 Authentication

In PKCS#11 the function C_Login allows a user to authenticate, in order to
activate a session and perform cryptographic operations. For the five devices
examined, we found that authentication is implemented in two different forms:
plaintext and challenge-response.

Plain Authentication. This authentication method is used by Safesite Classic
and Siemens CardOS. When the function C_Login is called, the PIN is sent
as plaintext to the token to authenticate the session. This operation does not
return any session handle at the APDU level, meaning that the low level protocol
is stateless: a new login is transparently performed by the library before any
privileged command is executed. The fact the PIN is sent as plaintext allows to
easily sniff the PIN even without having control of the computer, for example
using a hardware USB sniffer.

In Table2 we report an excerpt of a real APDU session trace of the C_Login
function. We can see that Safesite Classic and Siemens CardOS tokens use (line 4)
the standard ISO-7816 VERIFY command to authenticate: the PIN, in red col-
or/italic, is sent as a ASCII encoded string (“1234” and “12345”, respectively).

Challenge-Response Authentication. In the eToken PRO, ASEKey and
SecurID tokens the function C_Login executes a challenge-response protocol to
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Table 2. APDU session trace of the PKCS#11 C_Login function for the five devices.

C_Login session trace Device

# Custom Get challenge:
APDU: 80 17 00 00 08
SW: af 89 61 34 62 05 13 36 90 00 Aladdin

# Custom External authenticate: eToken PRO
APDU: 80 11 00 11 Oa 10 08 64 d5 97 15 Ja 44 eb 23
SW: 90 00

A W N RO

# Standard IS0-7816 Get challenge:

APDU: 00 84 00 00 00 00 08

SW: bb 8b ec f8 a3 a8 62 63 90 00

# Standard IS0-7816 External authenticate:

APDU: 00 82 02 00 00 00 18 00 00 11 12 8f e3 fa a6 a8 a8 07 10 47 e0
af 90 65 20 42 43 2d f0 47 16

SW: 90 00

Athena ASEKey
USB

AW N RO

o

# Send 8 random bytes:

APDU: 80 50 81 01 08 c9 ff 3c d6 63 a2 13 b0

SW: 61 1c

# Standard IS0-7816 Get response:

APDU: 00 cO 00 00 1ic

SW: 35 34 95 09 14 02 1d 3a 03 2a 81 01 03 Za ec a5 97 cc d0 ea Sa
cb 05 59 94 78 el 04 90 00

# Custom External authenticate:

APDU: 84 82 03 00 10 fb bb dd 65 5f 0d 70 cc 41 a7 23 47 1d af b0 72

SW: 90 00

RSA SecurID 800

oA W N = O

® N o

# Standard IS0-7816 Select file:

APDU: 00 a4 04 00 Oc a0 00 00 00 18 0Oa 00 00 01 63 42 00
SW: 90 00 Safesite Classic
# Standard IS0-7816 Verify: TPC IS V1
APDU: 00 20 00 01 08 371 32 33 34 00 00 00 00
SW: 90 00

QA W RO

# Standard IS0-7816 Select file:

APDU: 00 a4 04 Oc Oc a0 00 00 00 63 50 4b 43 53 2d 31 35
SW: 90 00 Siemens CardOS
# Standard IS0-7816 Verify: V4.3b
APDU: 00 20 00 81 05 31 32 33 34 35
SW: 90 00

QA W N RO

authenticate the session: the middleware generates a response based on the chal-
lenge provided by the token and the PIN given by the user. At the APDU level,
eToken PRO and ASEKey do not return any session handle thus, as for the pre-
vious devices, the low level protocol is stateless and a new login is transparently
performed by the library before executing any privileged command. Instead, on
the SecurID the challenge-response routine is executed only once for each session
as it returns a session handle.

PKCS#11 standard allows PIN values to contain any valid UTF8 character,
but the token may impose restrictions. Assuming that the PIN is numeric and
short (4-6 digits), which is the most common scenario, an attacker is able to
bruteforce the PIN offline, i.e. without having access to the device, as it is enough
to have one APDU session trace containing one challenge and one response. As
a proof of concept, we have reverse engineered the authentication protocol of
eToken PRO and ASEKey implemented in the PKCS#11 library. This allowed us
to try all possible PINs and check whether or not the response computed from
the challenge and the PIN matches the one in the trace.
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In Table 2 we can see that eToken PRO makes use of proprietary commands to
request the challenge and provide the response, while ASEKey uses the standard
ISO-7816 GET CHALLENGE and EXTERNAL AUTHENTICATE commands. We have
not reverse engineered the challenge-response protocol of the SecurID token but,
looking at the APDU session trace, we can identify a three-steps authentication
protocol. At line 1 eight random bytes are sent to the token; then, a standard
ISO-7816 GET RESPONSE command is issued to retrieve the challenge (highlighted
in red and italic at line 5) and the identifier of the PKCS#11 session (highlighted in
green and overlined). Line 7 contains the response generated by the middleware.

On both plain and challenge-response authentication, we have found that
tokens implement no protection against MITM: if an attacker can place himself
in the middle of the connection he could exploit an authentication exchange to
alter user commands or inject his own ones.

4.2 Sensitive Symmetric Keys

We discovered that in Siemens CardOS, eToken PRO and SecurID encryption
and decryption under a sensitive symmetric key is performed entirely by the
middleware. As a consequence, the value of the sensitive key is sent out of the
token as plaintext. This violates the basic PKCS#11 property stating that sen-
sitive keys should never be exported in the clear. We also found that ASEKey
surprisingly reuses the authentication challenge (sent in the clear) as the value
of freshly generated DES keys.
In the following, we describe the four devices separately.

Siemens CardOS V4.3b. This smartcard does not allow to create symmetric
keys with CKA_TOKEN set to true, meaning that symmetric keys will always be
session keys. According to PKCS#11 documentation, session keys are keys that
are not stored permanently in the device: once the session is closed these keys
are destroyed. Notice that this does not mean that sensitive session keys should
be exported in the clear out of the token. What distinguishes a session key from
a token key is persistence: the former will be destroyed when the session is closed
while the latter will persist in the token.

We observed that encryption under a sensitive key sends no APDUs to the
token. This gives evidence that encryption takes place entirely in the middle-
ware. Moreover, we verified that even C_GenerateKey function does not send any
APDU: in fact, it just calls the library function pkcs11_CryptGenerateRandom to
generate a random key value whose value is stored (and used) only inside the
library.

Aladdin eToken PRO. In Table3 (first row), we show that symmetric key
generation in eToken PRO is performed by the middleware. We can see, in red
and italic, a DES key value sent to the token in the clear.

The value of symmetric keys stored in the eToken PRO can be read by using
the proprietary APDU command 0x18. No matter which attributes are set for
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the key, its value can be read. We tested it over a DES key with attributes
CKA_TOKEN, CKA _PRIVATE, CKA_SENSITIVE set to true. In order to perform this
attack a valid login is required. Since symmetric key operations are performed
by the library, this APDU command is used to retrieve the key from the token
before performing operations in software.

As an example, in Table 3 (second row) we see part of a C_WrapKey operation
that retrieves a the DES cryptographic key from the token. We can see the value
of the key in the clear.

RSA SecurID 800. In Table3 (third row), we show that symmetric key gen-
eration in SecurID is also performed by the middleware. We can see, in red and
italic, a 3DES key value sent to the token in the clear.

We were also able to retrieve the value of a sensitive key stored inside
the SecurID by just issuing the correct APDU command. In fact, when trying
to use the C_GetAttributeValue function, the library correctly returns the
CKR_ATTRIBUTE_SENSITIVE error. However, what really happens is that the key

Table 3. Leakage of sensitive symmetric keys during PKCS#11 operations.

APDU session trace Token
0 # DES Key generation: red/italic = plain key value sent to the token
1 APDU: 80 16 01 00 2b 01 01 02 02 02 40 01 03 02 00 18 04 04 11 11 11 C_GenerateKey
11 10 18 17 3f ff £f ff £f 01 08 3f 44 5f c4 eb 76 f1 sample on Aladdin
86 06 64 65 73 6b 65 79 00 eToken PRO

2 SW: 90 00

0 # Fetch the key: green/overlined = attributes, red/italic = plain

key value, blue/underlined = label C_WrapKey sample on
1 APDU: 80 18 00 00 04 0Oe 02 00 00 18 Aladdin
2 SW: 17 3f ff ff ff ff 01 08 3f 44 5f c4 eb 76 f1 86 06 64 65 73 6b eToken PRO

65 79 00 90 00

0 # 3DES Secret key generation

1 APDU: 80 16 00 00 la 72 35 be e aa de 2d 47 72 b2 8b 47 5f de 63 4d
7e 30 a5 fO ac 5f cO 56 c6 90

2 SW: 90 00

C_GenerateKey
sample on RSA
SecurID 800

0 # 3DES key is read in the clear even if CKA_SENSITIVE is set to true

1 APDU: 00 cO 00 00 18

2 SW: 36 90 fa c9 4e 82 55 b1 71 1d 81 e4 3c dl bd fa 44 9c bb c3 bl
8b le 8d 90 00

C_GetAttributeValue
sample on RSA
SecurID 800

# Get challenge (Standard IS0-7816):

APDU: 00 84 00 00 00 00 08

SW: b7 c8 14 4b Je 5f e6 3e 90 00

# External authenticate (Standard IS0-7816):

APDU: 00 82 02 00 00 00 18 00 00 11 12 95 fa da de 0d 70 42 d9 21 c2
27 a4 8b af 7a 8b 90 47 ae 54

SW: 90 00

# Get an RSA modulus (in red/italic)

SW: 79 23 57 33 9a be 2a dd ba ae 2e 09 4c d0 3d 57 8b d0O 07 e4 cb
. (omitted) ...
19 6d 15 ea b6 aa cc 2b e8 30 c3 e8 cf 90 00

# Send the encrypted key to the token

o APDU: 80 24 00 80 00 00 a0 20 5b f1 f9 cd 67 c8 3d e0 cf 9b 1b 7 ad

(omitted) ...
33 0b 85 1a 27 7e cd 69 95 71 ca 2e 88 33 a7 f6 4a 97 22 a0
10 SW: 90 00

S =]

C_GenerateKey
sample on Athena
ASEKey

N o o
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# Manage security environment

APDU: 00 22 41 b6 06 80 01 12 84 01 07
SW: 90 00

# Custom perform security operation
APDU: 80 2a 9e ac 16 90 14

Sw: 61 80

# Custom getData

APDU: 80 cO 00 00 80

Sw:

0N U WN = O

90 00

Listing 1.3. Forced signature sample

is read from the token but the library just avoids to return it. In Table 3 (fourth
row) we can see (in red and italic) the value of the sensitive key leaked by the
token.

Athena ASEKey. The most surprising behaviour is shown by the ASEKey:
the value of token sensitive symmetric keys cannot be read arbitrarily via APDU
commands, as they are stored in a separated Dedicated File (DF) which requires
authentication. Nonetheless the key value is unnecessarily leaked when the key
is generated.

In Table3 (fifth row) we report an excerpt of APDU session for the
C_GenerateKey function. We notice that C_GenerateKey sends (line 9) the
key encrypted under RSA with a modulus (line 7), using the public exponent
0x010001. In fact, the library encrypts the whole Elementary File (EF) con-
taining the key value, that is going to be written in the token. This means that
special care was taken to avoid leaking the value as plaintext when importing it
in the token. Unfortunately the key value already appeared in the clear: quite
surprisingly, key generation re-uses the 8-bytes random string which is used by
the authentication step (line 2) as the sensitive key value.

As a proof of concept, we encrypted a zero-filled 8-bytes buffer using the
C_Encrypt function with the generated key and a null initialization vector. We
then performed the same encryption using the 8-bytes challenge as the DES key
value obtaining the same value.

4.3 Bypassing Attribute Values

In all five tokens examined, PKCS#11 attributes are interpreted by the middleware
and do not have any import on the internal behaviour of the token. We performed
a simple test by signing a text using an RSA key having the attribute CKA_SIGN
set to false:

1. take a private RSA key with CKA_SIGN false;
2. verify that it cannot sign a message via the PKCS#11 API, as expected;
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>>> signed = 0x9d70aa8dc4af7a88bae46cabd73e021981e585538a6a1b838c7339299e49bb24a7274£8e3860b6
d171c6927558fe3378d2fe995c964e3e43159d67£9db7b8b3¢c29d497d5ec2e467e2bc9c4920£38eb65112belb
a61337cal0362f42c2cf252852aeeab77cab6e378e3b5a57ddc164ead076712a460bbcd42aefc06c3277c35e79

>>> modulus =0xc1886b5f26ad5349426b8e8bfc9f73385d14f6cf2b2f1d95b080ae2df7aldb11b91d36db33£3b9
8£16871774711c03b22d7d97939062031df2d15371173b468£9986701d144£315005ec99a71b226fc71b95660
8c60747ceb4ac0c3725b7d04484ac286196975£18911361e28ec50b661273362131b4a4183e01667b090c96£9

>>> pubkey = 0x010001

>>> hex(pow(signed, pubkey, modulus))

RO 6 6 0 0 0 o 0 o 0 0 o 0 o 0 0 0 o 0 o 0 o o o

Rl e e 1 1 1 1 1 1 0 1 0 1 0 0 0 o 1 1 1 0 0 o o o o e

S ffffffFfFfFfFFfO059b7b50c2e694e3£7e2f067£071d8edddeba8ccOL

Listing 1.4. Signature verification in Python

3. perform the sign operation manually, via APDU, using the private key and
the message. Some tokens use the standard ISO-7816 command PERFORM
SECURITY OPERATION and some others use a proprietary command but, in
both cases after sniffing, it is easy to replicate any valid APDU trace for a
signature.

This confirms that the low-level behaviour of the token is not compliant to
PKCS#11 specification as it allows to perform signature under a key that has
CKA_SIGN attribute set to false. Since the behaviour of all five tokens is similar,
in Listing 1.3 we illustrate the case of Safesite Classic as a representative APDU
example trace. At line 4 the message is sent to the token and, at line 8, the
corresponding signature is returned.

We can verify that signature corresponds using Python shell, as shown in
Listing 1.4. In particular, notice that the obtained message corresponds to the
one we signed.

4.4 RSA Session Keys

When using session RSA keys on the eToken PRO, we discovered that key gen-
eration, encryption and decryption operations are performed inside the library.
This means that the value of the private key is exposed in the clear out of the
token.

Even if one might regard to session keys as less important than long-term
keys, as we already discussed in Subsect. 4.2 for Siemens CardOS, PKCS#11 still
requires that if such keys are sensitive they should not be exported out the token
in the clear. For example we can generate a session key which, at some point
before the end of the session, is persisted in the token’s memory by calling the
C_Copy0Object function. Clearly this newly created object cannot be considered
secure as the value of the private RSA key has already been leaked in the clear
out of the token.

5 Security Analysis

In Table4 we summarize the APDU-level attacks we found on the five devices.
In the columns labelled PKCS#11 we also report the PKCS#11 attacks from [5],
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Table 4. Summary of the vulnerabilities found.

Sensitive . .
Token Auth. symmetric keys E;{E?;:ileg RSA session keys
PKCS#11'| APDU values  |PKCS#11'| APDU
eToken PRO /7 v/ v/ v X V7
ASEKey v? X /e v X X
SecurID V2 /o v v X X
Safesite Classic v X X v X X
Siemens CardOS v X /1 v X X

PKCS#11-level attacks discovered in [5], for comparison.

Requires reverse engineering of the authentication algorithm and bruteforcing.
Leakage occurs only during generation.

Requires access to middleware memory.

1
2
3
4
5 Possible for RSA Authentication Client version < 3.5.3.

for comparison. In particular, the only token that allows for PKCS#11 Clulow-
style attack extracting a sensitive key in the clear is eToken PRO. For SecurID
we reported that it was possible to directly read the value of sensitive symmetric
keys and RSA released a fix starting from RSA Authentication Client version
3.5.3.3 In the literature we found no known API-level attacks on sensitive keys
for the remaining devices.

All devices are affected by attacks on the PIN, some of which requiring
reverse engineering and brute forcing, and by attacks bypassing key attributes.
For what concerns sensitive keys, only Safesite Classic is immune to attacks.
For the remaining four tokens we have reported new attacks that compromise
sensitive keys that are instead secure when accessed from the PKCS#11 API.

In order to clarify under which conditions the attacks are possible we cross-
compare Table1 with Table4 producing table Table5. In particular, for each
device we take the vulnerabilities reported in Table 4 and we check from Table 1
if the combination attacker/application offers the necessary conditions for the
attack. We omit the Admin attacker as it is in fact equivalent to the User attacker
when the application is monolithic. In particular, we observe that:

User/Monolithic the attacker can attach to the process and eavesdrop the
PIN at the PKCS#11 level. Knowing the PIN the attacker can perform any
operation and inspect the process memory. So all attacks of Table4 are
enabled;

User/Separate authentication mechanism the attacker cannot eavesdrop
the PIN directly. Interestingly PKCS#11-level attacks and attribute bypass
are still possible through a MITM on the middleware. Moreover, APDU-level
attacks on keys are still valid as they only require to eavesdrop the APDUSs;

User/Separate privileges the attacker can still eavesdrop the PIN and work at
the PKCS#11 level but all APDU-level attacks are prevented. In this setting the

3 See https://secgroup.dais.unive.it/projects/tookan /.
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Table 5. Summary of vulnerabilities with respect to attackers and applications.

Sensitive .
Attacker|Application Auth.| symmetric keys a]tst};ﬁ?z:e RSA session keys
PKCS#11*| APDU values |PKCS#11*| APDU
Aladdin eToken PRO

Monolithic v v v v X v
User Sep. Auth. X /T v /! X v/

Sep. Privileges v v X X X X

Sep. Auth.&Priv. | X Ve X X X X
Physical | Any /P e v/ /1 X X

Athena ASEKey

Monolithic v X v v X X
User Sep. Auth. X X /° /T X X

Sep. Privileges v X X X X X

Sep. Auth.&Priv. | X X X X X X
Physical |Any VP X v Ve X X

RSA SecurID 800

Monolithic v /7 v v X X
User Sep. Auth. X /7 v Ve X X

Sep. Privileges v Vel X X X X

Sep. Auth.&Priv. | X /T X X X X
Physical [Any SEE /T v/ Ve X X

Safesite Classic TPC IS V1

Monolithic v X X v X X
User Sep. Auth. X X X /T X X

Sep. Privileges v X X X X X

Sep. Auth.&Priv. | X X X X X X
Physical | Any e X X /1 X X

Siemens CardOS V4.3b

Monolithic v X v v X X
User Sep. Auth. X X v Ve X X

Sep. Privileges v X X X X X

Sep. Auth.&Priv. | X X X X X X
Physical | Any Ve X X Ve X X

! Requires MITM.

"Z Through a keylogger or a USB sniffer.

3 Only APDU payloads, cannot access middleware memory.
4 pKcs#11-level attacks discovered in [5], for comparison.
5 Requires reverse engineering of the authentication algorithm and bruteforcing.
Leakage occurs only during generation.
7 Possible for RSA Authentication Client version < 3.5.3.
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only insecure token is eToken PRO since it allows for PKCS#11-level attacks on
sensitive keys;

User/Separate authentication and privileges this is the more secure set-
ting: the attacker con only perform PKCS#11-level attacks on eToken PRO
through a MITM, since he cannot learn the PIN. All the other tokens are
secure;

Physical/ Any application through a keylogger or a USB sniffer the attacker
can learn the PIN. In case of a USB sniffer, for the tokens adopting challange-
response it is also necessary to reverse-engineer the protocol in the library and
perform brute-forcing on the PIN. APDU-level attacks are possible only when
the keys are transmitted from/to the device. So, for eToken PRO RSA session
keys and Siemens CardOS symmetric keys the attacks are prevented, as keys
are directly handled by the library and are never transmitted to the device.
Other attacks can be performed only through a MITM at the USB level.

5.1 Fixes and Mitigations

Compliant PKCS#11 devices should implement all the cryptographic operations
inside the hardware. This would prevent all of the attacks we have discussed
so far, except for the ones on authentication. However, fixing this at the hard-
ware level requires to redesign the device and is probably just not affordable, in
general.

We have seen, however, that having separate authentication and privileges is
a highly secure setting that fixes the problem of cryptographic operations imple-
mented at the library level and, at the same time, protects PIN authentication.
It is worth noticing that running the middleware with separate privileges can
be done transparently to the application while having separate authentication
requires to modify the application so that the login step is managed by separate
software or hardware.

An alternative way to mitigate attacks on PIN, with no changes in applica-
tions, could exploit the OTP functionality of the devices with a display, such
as SecurID. A one-time PIN might be generated by the token and shown on
the display asking the user to combine it with the secret token PIN. In this
way, offline brute-forcing would be slowed down by the longer, combined PIN
and, even if successful, would require physical access to the token in order to
re-authenticate since part of the PIN is freshly generated by the token each time
the user authenticates.

6 Conclusion

We have presented a new threat model for the PKCS#11 middleware and we have
analysed the APDU-level implementation of the PKCS#11 API for five commercially
available devices. Our findings show that all devices present APDU-level attacks
that, for four of them, make it possible to leak sensitive keys in the clear. The
only smartcard immune to attacks to keys is Safesite Classic. We have also found
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that all devices are vulnerable to attacks that leak the PIN if the middleware
is not property isolated and run with a different privilege (which is usually not
the case). Moreover, attackers with physical access could sniff an authentication
session through the USB port and brute-force the PIN once the authentication
protocol has been reverse-engineered.

We have reported our finding to manufacturers following a responsible dis-
closure principle and we are interacting with some of them to provide further
information and advices.
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