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Abstract. Despite the emphasis on building secure software, the number
of vulnerabilities found in our systems is increasing every year, and well-
understood vulnerabilities continue to be exploited. A common response
to vulnerabilities is patch-based mitigation, which does not completely
address the flaw and is often circumvented by an adversary. The prob-
lem actually lies in a lack of understanding of the nature of vulnerabili-
ties. Vulnerability taxonomies have been proposed, but their usability is
limited because of their ambiguity and complexity. This paper presents a
taxonomy that views vulnerabilities as fractures in the interpretation of
information as it flows in the system. It also presents a machine learning
study validating the taxonomy’s unambiguity. A manually labeled set of
641 vulnerabilities trained a classifier that automatically categorized more
than 70000 vulnerabilities from three distinct databases with an average
success rate of 80 %. Important lessons learned are discussed such as (i)
approximately 12 % of the studied reports provide insufficient information
about vulnerabilities, and (ii) the roles of the reporter and developer are
not leveraged, especially regarding information about tools used to find
vulnerabilities and approaches to address them.

1 Introduction

Despite the security community emphasis on the importance of building secure
software, the number of new vulnerabilities found in our systems is increasing
with time; The 2014 Symantec Internet Security report announced that 6,787
new vulnerabilities occurred in 2013. This represents a 28 % increase in the
period 2013–2014, compared to a 6 % increase in the period 2012–2013 [5]. Fur-
ther, old and well-studied vulnerabilities, such as buffer overflows and SQL injec-
tions, are still repeatedly reported [3].
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A common approach to address vulnerabilities is patch-based mitigation tar-
geting specific exploits. This approach may not completely address the vulnera-
bility since it fails to address its essence, and does not generalize well with similar
vulnerabilities exploited differently. Take the file-system TOCTTOU vulnerabil-
ity as an example. Dean and Hu [17] provided a probabilistic solution for filesys-
tem TOCTTOU that relied on decreasing the chances of an attacker to win all
races. In their solution, the invocation of the access() ... open() sequence of
system calls is followed by k additional calls to this pair of system calls. From
the application layer viewpoint, the solution addresses the concurrency issue
because the chances that the attacker will win all rounds are small. Borisov et al.
[10], however, observed that this vulnerability crosses the boundary between the
application and the operating system layers, and allowed an attacker to win the
race by slowing down filesystem operations. This caused the victim process to
be likely suspended after a call to access().

A first step towards viewing cyber security as a science is understanding
software vulnerabilities scientifically. Weber et al. [31] also argue that a good
understanding and systematization of vulnerabilities aids the development of
static-analysis or model checking tools for automated discovering of security
flaws.

Taxonomies decrease the complexity of understanding concepts in a par-
ticular field. Taxonomy-based vulnerability studies have been tried since the
70 s [7,8,18,21] but they were proved ambiguous by Bishop and Bailey [9], who
showed how the same vulnerability was put into multiple categories depending
on the layer of abstraction it was being analyzed. The other problem with cur-
rent taxonomies is their complexity. For example, CWE v1.9 has 668 weaknesses
and 1043 pages. Ambiguous and complex taxonomies not only confuse a devel-
oper, but also hinder the widespread development of automated diagnosis tools
leveraging its categories as points for checks.

This paper introduces a concise taxonomy for understanding the nature of
vulnerabilities that views vulnerabilities as fractures in the interpretation of
information as it flows in the system. In a seminal paper on computer viruses [15],
Cohen said that “information only has meaning in that it is subject to interpre-
tation.” This fact is at the crux of vulnerabilities in systems. As information
flows from one process to another and influences the receiving process’ behavior,
interpretations of that information can lead to the receiving process doing things
on the sending process’ behalf that the system designer did not intend to allow as
per the security model. Information, when viewed from the different perspectives
for the various levels of abstraction that make up the system (OS, application,
compiler, architecture, Web scripting engine, etc.), should still basically have the
same interpretation. The lack of understanding on the nature of vulnerabilities
cause defense solutions to focus on only one perspective (application, compiler,
OS, victim process or attacker process) and become just mitigation solutions
that are rapidly circumvented by a knowledgeable adversary.

To validate the unambiguity and usefulness of this taxonomy, a machine
learning-based [32] study was conducted using a training set of 641 manually
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classified vulnerabilities from three public databases: SecurityFocus [35],
National Vulnerability Database (NVD) [1] and Open Sourced Vulnerability
Database (OSVDB) [2]. This manually labeled set was used to train a machine
learning classifier built with the Weka suite of machine learning software [32].
More than 70000 vulnerabilities from a ten year period from the three databases
were automatically classified with an average success rate of 80 %, demonstrating
the unambiguity potential of the taxonomy.

Important lessons learned in this study are discussed. First, there are a sig-
nificant number of poorly reported vulnerabilities (approximately 12 % of the
vulnerabilities in the manually classified set), with descriptions containing insuf-
ficient or ambiguous information. This type of report pollutes the databases and
makes it hard to address vulnerabilities scientifically, and disseminate relevant
information to the security community. Second, the roles of the reporter and
the developer are not leveraged and important information has not been added
to reports, such as tools used to find vulnerabilities and approaches taken to
address them. Finally, the lack of standards on vulnerability reports and across
databases adds complexity to the goal of addressing vulnerabilities scientifically,
as they are viewed as dissimilar, independent and unique objects. The paper
also discusses the application of such taxonomy in the context of automated
diagnosis tools to assist the developer.

This paper’s contributions are as follows:

1. A concise taxonomy for understanding the nature of vulnerabilities based on
information-flow that can be easily generalized and understood is proposed.

2. The taxonomy’s categories and their information-flow nature are discussed
against notorious vulnerabilities, such as buffer overflows, SQL injection, XSS,
CSRF, TOCTTOU, side-channels, DoS, etc..

3. A large scale machine learning study validating the taxonomy’s unambiguity
is presented. In this study a manually labeled set of 641 vulnerabilities trained
a classifier that automatically categorized more than 70000 vulnerabilities
from three distinct databases with an average success rate of 80 %.

4. Important lessons learned are discussed such as (i) approximately 12 % of the
studied reports provide insufficient information about vulnerabilities, and (ii)
the roles of the reporter and developer are not leveraged, especially regarding
information about tools used to find vulnerabilities and approaches to address
them.

5. A discussion of the application of this taxonomy in automated diagnosis tools
is provided.

The rest of the paper is organized as follows. Section 2 presents the proposed
taxonomy and discusses notorious vulnerabilities from the perspective of infor-
mation flow. Section 3 presents the machine learning study conducted to evaluate
the taxonomy. Section 4 discusses related work and Sect. 5 concludes the paper.
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2 The Taxonomy

This paper introduces a new vulnerability taxonomy based on information flow.
The goal was to produce an unambiguous taxonomy that can be leveraged to
address software vulnerabilities scientifically. Vulnerabilities are viewed as frac-
tures in the interpretation of information as it flows in the system. Table 1 details
with examples the proposed taxonomy and its categories. The following sections
describe each one of these categories with some examples and how they can be
viewed in terms of information flow.

Please notice that there is no design flaw category because this study under-
stands that all vulnerabilities are ultimately caused by design flaws. Vulnerabil-
ities are weaknesses in the design and/or implementation of a piece of software
that allow an adversary to violate the system security policies regarding the
three computer security pillars: confidentiality, integrity and availability.

2.1 Control-Flow Hijacking

These vulnerabilities allow an attacker to craft an exploit that communicates
with a process in a malicious way, causing the adversary to hijack the process’
control-flow. There are several vulnerabilities that fall into this category: all types
of buffer overflows [20] (stack, heap, data, dtors, global offset table, setjmp and
longjmp, double-frees, C++ table of virtual pointers, etc.), format string, SQL
injection [28] and cross-site scripts (XSS) [30]. Code-reuse attacks [26] are con-
sidered a capability of an attacker after leveraging a stack-based buffer overflow
and not a vulnerability in itself.

In a general memory corruption attack an adversary provides a victim process
with a set of bytes as input, where part of these bytes will overwrite some con-
trol information with data of the attacker’s choice (usually the address of a
malicious instruction). This control information contains data that will even-
tually be loaded into the EIP register, which contains the address of the next
instruction to be executed by the CPU at the architecture level.

For these cases, the fracture in the interpretation of information occurs when
user input crosses boundaries of abstractions. User input is able to influence the
OS, which manages the process address space and the control memory region
being abused. User input also influences the architecture layer as it is directly
written into the EIP register. For buffer overflows on the heap, data, and dtors
areas, an attacker overwrites a data structure holding a function pointer with
a malicious address. The effect is the same in all cases: the function will be
eventually called, and its address will be loaded into the EIP register.

In a SQL injection [28] user input is directly combined with a SQL command
written by an application developer, and this allows an attacker to break out
of the data context when she supplies input as a combination of data, control
characters and her own code. This malicious combination causes a misinterpre-
tation of data input as it is provided by the web scripting engine. The script-
ing engine, which processes user input, misinterprets it as data that should be
concatenated with a legitimate command created by the application developer.
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Table 1. Taxonomy categories.

Category Description Examples

Control-flow hijacking Vulnerabilities where
information flows from
the input to a process
into the control flow of
the process causing its
execution to be hijacked

Buffer overflows,
memory corruption,
SQL injection,
cross-site scripts

Process confusion Vulnerabilities where
information flows from
the security metadata of
one object into a security
decision about another

TOCTTOU, confused
deputy, cross-site
request forgery
(CSRF)

Side-channels Vulnerabilities where
information flows from
physical or side-effects of
the operation or
communication channels
of the system into an
illegitimate
authentication decision
or information
disclosure.

Physical: timing/power
and electromagnetic
attacks. Communi-
cations/operation:
man-in-the-middle,
replay, /proc
filesystem attacks

Exhaustion Vulnerabilities where a
significant amount of
information flows into a
process causing
unavailability
(exhaustion of resources)
or an illegitimate
authentication decision
(exhaustion of input
space)

Resources: DoS, TCP
SYN flood, ICMP
flood. Input space:
password cracking
and dictionary
attacks

Adversarial accessibility Vulnerabilities where
information is allowed to
flow to the attacker’s
process causing a breach
of confidentiality,
illegitimate
authentication or
interference with system
functionality

Assignment of weak
permissions to
system objects,
access control
errors, and
non-control-data
attacks [14]
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The SQL query interpreter then parses the input provided by the scripting engine
as SQL code that should be parsed and executed. The misinterpretation between
the web scripting engine and the SQL query interpreter causes the vulnerability.

2.2 Process confusion

This type of vulnerability allows an attacker to confuse a process at a higher layer
of abstraction where this process is usually acting as a deputy, performing some
task on behalf of another lower privileged process. A fracture in the interpreta-
tion of information allows the security metadata of one object to be transferred
into a security decision about another object. A classic example is TOCTTOU,
one of the oldest and most well-studied types of vulnerability [23]. It occurs
when privileged processes are provided with some mechanism to check whether
a lower-privileged process should be allowed to access an object before the priv-
ileged process does so on the lower-privileged process’ behalf. If the object or
its attribute can change either between this check and the actual access that
the privileged process makes, attackers can exploit this fact to cause privileged
processes to make accesses on their behalf that subvert security. The classic
example of TOCTTOU is the sequence of system calls access() followed by
open():

if (access("/home/bob/symlink",

R_OK | W_OK) != -1)

{

// Symbolic link can change here

f = fopen("/home/bob/symlink", "rw");

...

}

What makes this a vulnerability is the fact that the invoker of the privileged
process can cause a race condition where something about the filesystem changes
in between the call to access() and the call to open(). For example, the file
/home/bob/symlink can be a symbolic link that points to a file the attacker
is allowed to access during the access() check (e.g., file /home/bob/bob.txt)
that bob can read and write, but at a critical moment is changed to point to a
different file that needs elevated privileges for access (e.g., /etc/shadow).

Consider that the security checks for /home/bob/bob.txt (including
stat()ing each of the dentry’s and checking the inode’s access control list) get
compressed into a return value for the access() system call that is stored in
register EAX. This information is interpreted to mean that bob is allowed to
access the file referred to by /home/bob/symlink.

The information crosses the boundary between an OS abstraction (the ker-
nel) and a user-level abstraction into the EAX register, which contains the return
value (architecture layer abstraction). Then a control flow transfer conditioned
on the EAX register is now transformed into a decision to open the file pointed
to by /home/bob/symlink. The interpretation of information becomes fractured
in this information flow between the return value and the open() system call,
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which occurs at the architecture layer. To the OS, the value returned in regis-
ter EAX was a security property of /home/bob/bob.txt. At the architectural
level the value of the program counter (register EIP), which contains the exact
same information, is implied to be a security property of /etc/shadow. The
information is the same, but when viewed from different perspectives for the
different layers of abstraction that make up the system the interpretation has
been fractured.

TOCTTOU is a much broader class of vulnerabilities and no all cases are
related to UNIX filesystem atomicity issues [29].

2.3 Side-Channels

This type of vulnerability allows an attacker to learn sensitive information about
a system such as cryptographic keys, sites visited by a user, or even the options
selected by the user when interacting with web applications by leveraging phys-
ical or side-effects of the system execution or communications.

Examples of such vulnerability are found in systems where the execution
of certain branches is dependent on input data, causing the program to take
varying amounts of time to execute. Thus, an attacker can gain information
about the system by analyzing the execution time of algorithms [12]. Other
physical effects of the system can be analyzed, such as hardware electromagnetic
radiation, power consumption [27] and sound [34]. An attacker can also exploit
weaknesses in the communication channels of a process to breach confidentiality
[13,19,33].

As example, first consider a timing attack (Physical side-channel) where an
adversary attempts to break a cryptosystem by analyzing the time a crypto-
graphic algorithm takes to execute [12]. The cryptographic algorithm itself does
not reveal cryptographic keys, but the leaking of timing information is a side-
effect of its execution. This information flows from the server machine to the
client machine and is interpreted in the client (the attacker’s machine) as tokens
of meaningful information. The combination of these tokens of information over
several queries allows the attacker to succeed by making correlations among the
input, the time to receive an answer, and the key value.

Another example is a Man-in-the-middle (MiM) vulnerability (Communica-
tions / Operation), which is a form of eavesdropping where the communication
between two parties, Alice and Bob, is monitored by an unauthorized party, Eve.
The eavesdropping characteristic of MiM vulnerabilities implies that authenti-
cation information is leaked through a channel not anticipated by the system
designer (usually the network). In the classic example, Alice asks for Bob’s pub-
lic key, which is sent by Bob through the communication channel. Eve is able
to eavesdrop the channel and intercepts Bob’s response. Eve sends a message
to Alice claiming to be Bob and passing Eve’s public key. Eve then fabricates a
bogus message to Bob claiming to be Alice and encrypts the message with Bob’s
public key. In this attack information flows from the communication channel
between Alice’s and Bob’s processes into an illegitimate authentication decision
established by Eve.
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2.4 Exhaustion

This type of vulnerability allows an adversary to compromise the availability or
confidentiality of a system by artificially increasing the amount of information
the system needs to handle. This augmented information flow can leave the sys-
tem unable to operate normally (attack on availability) or can allow an attacker
to illegitimately authenticate herself into the system (attack on confidentiality).
The Exhaustion category was subdivided into two subcategories (exhaustion of
resources and exhaustion of input space) due to their differences in nature and also
because they target different security pillars, respectively availability and confi-
dentiality. They both belong to the same broader category because they leverage
an artificial increase in the amount of information flowing into the system.

Exhaustion of resources vulnerabilities allow an attacker to cause a steep con-
sumption of a system’s computational resources, such as CPU power, memory,
network bandwidth or disk space. A classic example is the standard DoS attack:
an attacker saturates a target machine with communication requests so that the
machine is left short of resources to serve legitimate requests. The victim server
process does not handle the uncommon case (exploited by attackers) of a steep
increase in the amount of information it has to handle.

Exhaustion of input space vulnerabilities are leveraged to allow an adver-
sary to illegitimately authenticate herself into the system by exploiting a great
portion of a vulnerable process authentication input space. For example, in a
password cracking attack an adversary repeatedly attempts password strings in
the hope that one of them will allow her to authenticate herself into the system.
A system will be vulnerable to this type of attack depending on the strength of
the password. A secure system can tolerate a steep increase in authentication
information flowing into it (password guesses) without its confidentiality being
compromised, or guard itself against an exhaustion attack, by for example, lock-
ing the system after a few failed attempts.

2.5 Adversarial Accessibility

These vulnerabilities occur when weaknesses in the system design and implemen-
tation allow information to flow to an adversary or her process when it should
not, as per the system security policies. A classic example is when weak permis-
sions are assigned to system objects, allowing an adversary access to sensitive
information or abstractions. This illegitimate information flow to the attacker
can also result in authentication breaches. For instance, a vulnerable access con-
trol mechanism that does not perform all necessary checks can allow an attacker
to authenticate herself in the system and access its resources.

3 Evaluation

The goal of this study was to evaluate how faithfully the categories reflect
real vulnerabilities and to assess the taxonomy’s potential for classifying vul-
nerabilities unambiguously. This analysis leveraged three well-known public
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vulnerability databases: SecurityFocus (SF) [4], National Vulnerability Database
(NVD) [1], and Open Source Vulnerability Database (OSVDB) [2].

The study employed machine learning to classify a large number of vulnera-
bilities according to the proposed taxonomy. In this analysis we used the Weka
data mining software [32]. The study started with the manual classification,
according to the proposed taxonomy, of 728 vulnerabilities from SecurityFocus
(202 vulnerabilities), NVD (280 vulnerabilities), and OSVDB (246 vulnerabil-
ities) databases. This manual classification was done independently by four of
the authors, with an inter-rater agreement of approximately 0.70 (see Table 2).
A vulnerability report contains the following attributes (names vary per data-
base): ID, title, description, class, affected software and version, reporter, exploit
and solution. For purposes of classification, the most important attributes in a
vulnerability report are the title and the description. The class attribute was
observed to be highly ambiguous; SecurityFocus, for instance, classifies highly
distinct vulnerabilities as Design error. The manual classification selected vulner-
abilities in descending chronological order, starting with the most recent vulner-
abilities in the respective databases. As some categories were under-represented
in the most recent set of reported vulnerabilities and the goal was to build a
large and well-represented training set, the authors manually searched for reports
fitting under-represented categories in the past. This process showed that the
taxonomy was easily applied, even though some questions were raised about vul-
nerabilities with poor or ambiguous descriptions. Table 3 shows a summary of
the manual classification.

Approximately 12 % of the most recent vulnerability reports contain insuffi-
cient or ambiguous information to reason about the corresponding security flaw.
For example, the SecurityFocus vulnerability report with BID 55977 only reveals
that a certain software is vulnerable. To avoid polluting the training set and
confusing the machine learning classifier, all vulnerabilities with insufficient or
ambiguous descriptions (87 total) were filtered out of the manually labeled set.

The study proceeded with the automated extraction of all vulnerability
reports from NVD, OSVDB and SecurityFocus for the periods of 2013-2012,
2009-2008, and 2004-2003. The goal was to classify vulnerabilities from three
distinct periods over the last decade and identify trends and patterns. A total
of 70919 vulnerabilities were extracted (37030 from OSVDB, 23155 from NVD
and 10506 from Security Focus) forming the testing set to be categorized by the
machine learning classifier. We used the Näıve Bayes algorithm as it is popular
for text classification.

All the reports collected for the training and testing set were pre-processed
by a parser that converted them into the Weka’s ARFF format [32]. The parser
used the Weka’s String to Word vector filter [32], which turned each word in the
title or description into an attribute, and checked whether or not it was present.
The filter removed stopwords and established a threshold on the number of words
kept per machine learning sample.

Table 4 summarizes the results obtained for the automated classifica-
tion of vulnerabilities for the three databases studied. Control-flow hijacking
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Table 2. Examples of manually classified vulnerabilities.

Category Database/ID Description (Abridged)

Control-flow hijacking SF 54982 “glibc is prone to multiple stack-based
buffer-overflow vulnerabilities because
it fails to perform boundary checks on
user-supplied data”.

Process confusion NVD 2013-2709 “Cross-site request forgery vulnerability
in the FourSquare Checkins plugin
allows remote attackers to hijack the
authentication of arbitrary users”.

Side-channels OSVDB 94062 “RC4 algorithm has a cryptographic flaw
.. the first byte output by the PRG ...
correlating to bytes of the key ...
allows attacker to collect keystreams
to facilitate an attack”

Exhaustion NVD 1999-1074 “Webmin does not restrict the number of
invalid passwords that are entered for
a valid username, ... allow remote
attackers to gain privileges via brute
force password cracking.

Adversarial accessibility NVD 2013-0947 “EMC RSA Authentication Manager
allows local users to discover cleartext
operating-system passwords ... by
reading a log file or configuration
file.”

No information SF 55977 “Oracle Outside In Technology is prone
to a local security vulnerability. The
‘Outside In Filters’ sub component is
affected. Oracle Outside In
Technology is vulnerable.”

Ambiguous SF 39710 JBoss is prone to multiple
vulnerabilities, including an
information-disclosure issue and
multiple authentication-bypass issues.
An attacker can exploit these issues to
bypass certain security restrictions to
obtain sensitive information...”

Table 3. Manual classification of vulnerabilities.

Database Control-flow

hijacking

Process

confusion

Side chan-

nels

Exhaustion Adversarial

accessibility

No info Ambiguous

SF (202) 60 (30%) 32 (16%) 27 (13%) 34 (17%) 18 (9%) 17 (8%) 14 (7%)

NVD (280) 149 (53%) 8 (3%) 24 (8%) 35 (12%) 30 (11%) 11 (4%) 23 (8%)

OSVD (246) 150 (61%) 9 (4%) 26 (10%) 32 (13%) 15 (6%) 8 (3%) 3 (1%)

Total (728) 359 (49%) 49 (7%) 77 (10%) 101 (14%) 63 (9%) 36 (5%) 51 (7%)
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vulnerabilities make more than 50 % of all reported vulnerabilities in all data-
bases, followed by Adversarial accessibility (19 %), Exhaustion (16 %), Side-
channels (3 %) and Process confusion (2 %). This trend was consistent in all
databases and did not change much over the last decade.

The standard method of stratified tenfold cross validation [32] was used to
predict the success rate of the classifier, which obtained, respectively, success
rates of 84.6 %, 73.1 %, and 82 % for the OSVDB, NVD, and SecurityFocus
databases. The authors believe that two reasons prevented the classifiers from
obtaining higher success rates: (i) the non-negligible number of reports with
insufficient information about the vulnerability; approximately 12 % for the most
recent vulnerabilities appearing in the training set for all three databases, and
(ii) DoS vulnerabilities, which depending on how they are exploited can be clas-
sified as Exhaustion or Control-flow hijacking. For example, an attack that works
by sending a very large number of requests to a server, so as it does not have
sufficient resources to serve legitimate requests exploits an Exhaustion vulner-
ability. On the other hand, a buffer overflow that crashes the application (still
changing the control-flow according to the attacker’s choice) is usually named
a DoS attack in vulnerability reports, even though the root cause of the vul-
nerability does not involve exhaustion of resources. Table 5 shows examples of
vulnerabilities automatically categorized by the classifier.

3.1 Discussion

Approximately 12 % of all examined reports do not provide sufficient information
to understand the corresponding vulnerabilities. These descriptions specify the
capabilities of attackers after the vulnerability is exploited, or just mention that
an unspecified vulnerability exists.

Also, important information on the process of finding vulnerabilities is usu-
ally not provided: reporter contact information, tools used to discover vulnera-
bilities, whether the vulnerability was discovered through normal software usage
or careful inspection, exploit examples and steps to reproduce the vulnerability.
Certain reports provide URLs for exploits or steps to reproduce the flaw, but
many of these links are invalid as if this information were ephemeral. This infor-
mation should be permanently recorded; it is invaluable to educate developers
during the software development cycle and help the security community build a
body of knowledge about the nature of vulnerabilities.

The lack of this important information in vulnerability reports shows that
the roles played by reporters and developers are undermined. Reports discussing
strategies for finding vulnerabilities could help developers designing more secure
software. Further, it would be invaluable to the security community and other
developers information on how the vulnerability was addressed. For example, was
the vulnerability caused by a weakness on a particular API ? Did the developer
use a particular tool or strategy to address the vulnerability?
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Table 4. Automated classification of vulnerabilities.

Period Total Control-flow

hijacking

Process con-

fusion

Side-channels Exhaustion Adversarial

accessibility

OSVDB

2013-12 14270 9261 (64.8%) 555 (3.8%) 440 (3%) 1521 (10.6%) 2493 (17.4%)

2009-08 16945 10770 (63.5%) 66 (0.4%) 126 (0.7%) 3099 (18.2%) 2884 (17%)

2004-03 5815 2990 (51.4%) 0 21 (0.3%) 1318 (22.6%) 1486 (25.5%)

All 37030 23021 (62.1%) 621 (1.6%) 587 (1.5%) 5938 (16%) 6863 (18.5%)

NVD

2013-12 7822 4062 (51.9%) 239 (3%) 321 (4.1%) 1141 (14.5%) 2059 (26.3%)

2009-08 11361 7021 (61.7%) 207 (1.8%) 310 (2.7%) 1388 (12.2%) 2435 (21.4%)

2004-03 3972 1958 (49.2%) 57 (1.4%) 132 (3.3%) 690 (17.3%) 1135 (28.5%)

All 23155 13041 (56.3.1%) 503 (2.1%) 763 (3.2%) 3219 (13.9%) 5629 (24.3%)

SecurityFocus

2013-12 2071 1057 (51%) 122 (5.8%) 60 (2.8%) 335 (16.1%) 497 (23.9%)

2009-08 5788 4216 (72.8%) 172 (2.9%) 168 (2.9%) 661 (11.4%) 571 (9.8%)

2004-03 2647 710 (26.8%) 1264 (47.7%) 512 (19.3%) 1264 (47.7%) 139 (5.2%)

All 10506 5983 (56.9%) 316 (3%) 750 (7.1%) 2260 (21.5%) 1207 (11.4%)

All databases consolidated

2013-12 24163 14380 (59.5%) 916 (3.7%) 820 (3.3%) 2997 (12.4%) 5049 (20.8%)

2009-08 34094 22007 (64.5%) 445 (1.3%) 604 (1.7%) 5148 (15%) 5890 (17.2%)

2004-03 12434 5658 (45.5%) 1321 (10.6%) 665 (5.3%) 3272 (26.3%) 2790 (22.4%)

All 70691 42045 (59.4%) 1440 (2%) 2100 (2.9%) 11417 (16.1%) 13699 (19.3%)

A lack of standardization among vulnerability reports across databases was
also observed. This makes it very difficult to understand actual trends and sta-
tistics about vulnerabilities; they are viewed as one of a kind and not addressed
together according to their similarities. Finally, there is no guarantee that a
vulnerability is reported in a public database only after the vendor had been
informed about the issue. A responsible reporter should always report the vul-
nerability first with the vendor or developer and allow them a reasonable amount
of time (e.g., 30 days) to address the issue before making it public in a database.

4 Related Work

The first efforts towards understanding software vulnerabilities happened in the
70 s through the RISOS Project [7] and the Protection Analysis study [18].
Landwehr et al. [21] proposed a taxonomy based on three dimensions: genesis,
time, and location, and classified vulnerabilities as either intentional (malicious
and non-malicious) or inadvertent. Aslam [8] introduced a taxonomy targeting
the organization of vulnerabilities into a database and also the development
of static-analysis tools. Bishop and Bailey [9] analyzed these vulnerability tax-
onomies and concluded that they were imperfect because, depending on the layer
of abstraction that a vulnerability was being considered in, it could be classified
in multiple ways.
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Table 5. Examples of vulnerabilities automatically categorized by the classifier.

Category Database/ID Description (Abridged)

Control-flow hijacking NVD 2003-0375 “XSS vulnerability in member.php of
XMBforum XMB allows remote
attackers to insert arbitrary HTML
and web script via the “member”
parameter.”

Process confusion OSVDB 94899 “DirectAdmin Backup System contains a
flaw as an unspecified email account
function creates temporary files
insecurely. It is possible for attacker
to use a symlink attack against an
unspecified file to gain elevated
privileges”.

Side-channels OSVDB 95626 “WhatsApp Messenger contains a flaw
triggered when attacker intercepts a
payment request via a MiM attack ...
allow the attacker to redirect user to
arbitrary web page”

Exhaustion SF 58500 “IBM Integrator is prone to a DoS
vulnerability. Remote attackers can
exploit this issue to cause an
application to consume excessive
amounts of memory and CPU time,
resulting in a DoS condition”

Adversarial accessibility NVD 2013-3431 Cisco Video Surveillance Manager does
not require authentication for access
to VSMC monitoring pages, allows
remote attackers to obtain sensitive
configuration information.

Lindqvist and Jonsson [22] presented a classification of vulnerabilities with
respect to the intrusion techniques and results. The taxonomy on intrusion
techniques has three global categories (Bypassing Intended Controls and Active
and Passive Misuse of Resources), which are subdivided into nine subcategories.
The taxonomy on intrusion results has three broader categories (Exposure,
Denial of Service and Erroneous Output), which are subdivided into two lev-
els of subcategories.

More recently the Common Weakness Enumeration (CWE) [6] was intro-
duced as a dictionary of weaknesses maintained by the MITRE Corporation
to facilitate the use of tools that can address vulnerabilities in software. The
Open Web Application Security Project (OWASP) was also created to raise
awareness about application security by identifying some of the most critical
risks facing organizations. Even though these projects do not define themselves
as taxonomies, their classification is ambiguous. For example, CWE-119 and
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CWE-120 are two separate weaknesses that address buffer overflows. Also,
OWASP classifies injection and XSS as different categories, even though XSS
concerns malicious code being injected into a web server.

There are also discussions about the theoretical and computational science
of exploit techniques and proposals to do explicit parsing and normalization of
inputs [11,16,24,25]. Bratus et al. [11] discuss “weird machines” and the view
that the theoretical language aspects of computer science lie at the heart of prac-
tical computer security problems, especially exploitable vulnerabilities. Samuel
and Erlingsson [25] propose input normalization via parsing as an effective way
to prevent vulnerabilities that allow attackers to break out of data contexts.
Crandall and Oliveira [16] discussed in a position paper the information-flow
nature of software vulnerabilities.

In this work vulnerabilities are viewed as fractures in the interpretation of
information as it flows in the system. It is not attempted to pinpoint a location
for a vulnerability because they can manifest in several locations or semantic
boundaries. Further, the primary goal of our taxonomy is to address ambiguity,
which makes it difficult to reason about vulnerabilities effectively.

5 Conclusions

This paper presented a new vulnerability taxonomy that views vulnerabilities as
fractures in the interpretation of information as it flows in the system. Notorious
vulnerabilities are discussed in terms of the taxonomy’s categories. A machine
learning study evaluating the taxonomy is presented. Almost 71000 vulnerabili-
ties were automated classified with an average success rate of 80 %. The results
showed the taxonomy’s potential for unambiguous understanding of vulnerabil-
ities. Lessons learned were discussed: (i) control-flow hijacking vulnerabilities
represent more than 50 % of all vulnerabilities reported, a trend that was not
changed over the last decade, (ii) approximately 12 % of recent vulnerabilities
reports have insufficient information about the security flaw, (iii) the lack of
standards in reporting makes it difficult to address vulnerabilities scientifically.
This work will hopefully shed light on how the security community should app-
roach vulnerabilities and how to best develop automatic diagnostic tools that
find vulnerabilities automatically across layers of abstraction.
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