
Automatic Uncovering of Tap Points
from Kernel Executions

Junyuan Zeng, Yangchun Fu, and Zhiqiang Lin(B)

The University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX 75080, USA
{jzeng,yangchun.fu,zhiqiang.lin}@utdallas.edu

Abstract. Automatic uncovering of tap points (i.e., places to deploy
active monitoring) in an OS kernel is useful in many security applications
such as virtual machine introspection, kernel malware detection, and ker-
nel rootkit profiling. However, current practice to extract a tap point for
an OS kernel is through either analyzing kernel source code or manually
reverse engineering of kernel binary. This paper presents AutoTap, the
first system that can automatically uncover the tap points directly from
kernel binaries. Specifically, starting from the execution of system calls
(i.e., the user level programing interface) and exported kernel APIs (i.e.,
the kernel module/driver development interface), AutoTap automati-
cally tracks kernel objects, resolves their kernel execution context, and
associates the accessed context with the objects, from which to derive the
tap points based on how an object is accessed (e.g., whether the object
is created, accessed, updated, traversed, or destroyed). The experimen-
tal results with a number of Linux kernels show that AutoTap is able
to automatically uncover the tap points for many kernel objects, which
would be very challenging to achieve with manual analysis. A case study
of using the uncovered tap points shows that we can use them to build
a robust hidden process detection tool at the hypervisor layer with very
low overhead.

Keywords: Virtual machine introspection · Kernel function reverse
engineering · Active kernel monitoring · (DKOM) rootkit detection

1 Introduction

A tap point [10] is an execution point where active monitoring can be performed.
Uncovering tap points inside an OS kernel is important to many security appli-
cations such as virtual machine introspection (VMI) [15], kernel malware detec-
tion [17], and kernel rootkit profiling [19,25]. For example, by tapping the inter-
nal execution of the creation and deletion of process descriptors, it can enable a
VMI tool to track the active running processes [4]. Prior systems mainly hook
the execution of the public exported APIs (e.g., system calls such as fork in
Linux) to track the kernel object creation (e.g., task struct). However, attack-
ers can actually use some of the internal functions to bypass the check and create

c© Springer International Publishing Switzerland 2016
F. Monrose et al. (Eds.): RAID 2016, LNCS 9854, pp. 49–70, 2016.
DOI: 10.1007/978-3-319-45719-2 3

50 J. Zeng et al.

the “hidden” objects. Therefore, it would be very useful if we can automatically
identify these internal tap points and hook them for the detection.

Unfortunately, the large code base of an OS kernel makes the uncovering of
tap points non-trivial. Specifically, an OS kernel tends to have tens of thousands
of functions managing tens of thousands of kernel objects. Meanwhile, it has
very complicated control flow due to the asynchronized events such as interrupts
and exceptions. Finding which execution point can be tapped is daunting at
binary level. In light of this, current practice is to merely rely on human beings
to manually inspect kernel source code (if it is available), or reverse engineer the
kernel binary to identify the tap points.

To advance the state-of-the-art, we present AutoTap, a system for
Automatic uncovering of Tap points directly from kernel binary. We focus on
the tap points that are related to kernel objects since kernel malware often
manipulates them. In particular, based on how an object is accessed, we classify
the tap points into creation, initialization, read, write, traversal, and destroy.
By observing which execution point is responsible for these object accesses, we
derive the corresponding tap points.

The reason to derive tap points by associating kernel objects with the cor-
responding execution context is because different kernel objects are usually
accessed in different kernel execution context. The context entails not only the
instruction level access such as read or write to a particular field of an object, but
also the calling context such as the current function, its call-chain, and its system
call (syscall for brevity henceforth) if the execution is within a particular syscall,
or other contexts such as interrupts. As to-be-demonstrated in this paper, such
knowledge, along with the meaning of the available kernel data structures, is
sufficient to derive the tap points for active kernel monitoring.

Having the capability of uncovering the tap points, AutoTap will be valuable
in many security applications. One use case is we can apply AutoTap to detect
the hidden kernel objects by tapping the internal kernel object access functions.
Meanwhile, we can also use AutoTap to reverse engineer the semantics of kernel
functions. For instance, with AutoTap we can now pinpoint the function that
creates, deletes, initializes, updates, and traverses kernel objects. In addition,
we can also identify common functions that operate with many different type
of objects, which will be particularly useful to uncover the meanings of kernel
functions especially for closed source OS.

In summary, we make the following contributions:

– We present AutoTap, the first system that is able to automatically uncover
the tap points for introspection directly from kernel executions.

– We introduce a novel approach to classify the complicated kernel execution
context into a hierarchical structure, from which to infer function semantics
and derive tap points based on how an object is accessed.

– We have built a proof-of-concept prototype of AutoTap. Our evaluation
results with 10 recent Linux kernels show that our system can directly recog-
nize a large number of tap points for the observed kernel objects.

– We also show how to use our uncovered tap points to build a general hidden
process detection tool, which has very small overhead.

Automatic Uncovering of Tap Points from Kernel Executions 51

2 System Overview

Since the goal of AutoTap is to uncover the tap points for the introspection of
kernel object, we have to first track the kernel objects and their types. However,
at binary code level, there is no type information associated with each object
and we have to first recover them. Fortunately, our prior system Argos [30]
has addressed this problem. Argos is a type inference system for OS kernels,
and it is able to track the kernel object, assign syntactic types, and even point
out the semantics for a limited number of important kernel objects but not all
of them. Therefore, AutoTap has reused several components from Argos and
also extended them for kernel object type inference.

Having inferred the types of kernel objects, we have to infer the tap points of
our interest. A tap point is usually an instruction address (e.g., a function entry
address) where active monitoring can be performed. Since tap points uncovering
is essentially a reverse engineering problem, we have to start from known knowl-
edge to infer the unknown one [10]. With respect to an OS kernel, the well-known
knowledge would include its syscall interface (for user level programs), and all of
its kernel module development interface (for kernel driver programs). Therefore,
one of the key challenges would be how to leverage these knowledge to system-
atically infer the meaning of the accessed functions, from which to derive the
corresponding tap points.

Key Insights. After analyzing how a typical OS kernel is designed and executed
and also based on the experience from our prior systems including Argos and
REWARDS [22], we have obtained the following insights to address the above
challenges:

– From data access to infer function semantics. A program (with no
exception to OS kernel) is composed of code and data, where code defines
how to update data and data keeps the updated state. While there are a large
number of kernel functions, from low level data access perspective, we can
classify them into a number of primitive accesses including the basic data read
and write according to how an instruction accesses it. We can also capture
their lifetime based on their allocation and deallocation especially for heap
and stack data. We can even differentiate further from the first time write
(i.e., initialization) to the subsequent write according to the memory write
operations. We can also conclude a piece of code is a traversal function if we
observe it performs memory dereferences to reach other objects (either with
the same type or different types).

– From hardware level events to infer function semantics. In addition to
observing the instruction level data access behavior, we can also observe the
hardware level events such as interrupts and exceptions to infer the function
semantics. For example, if a function is always executed in a timer interrupt,
we can conclude it is likely a periodic function (e.g., schedule function);
if it is executed inside a keyboard response interrupt, we can conclude it is a
keystroke interrupt handler.

52 J. Zeng et al.

– From syscall level events to infer function semantics. Another category
of useful information is the system call events. If a function is executed inside
fork, we know this function is likely kernel object creation related; if it is inside
socket send, we know it must be network communication related. Meanwhile,
we also know a fork syscall must create kernel objects such as task struct,
and a send syscall must access a socket object.

– Inferring the semantics of objects from kernel APIs. While kernel has
a large number of kernel objects, not all of them are of attackers’ interest.
Consequently, we have to identify the type of the kernel objects such that we
can pinpoint the tap points of our interest. To this end, we can leverage the
types of the parameters and return values of kernel APIs, the public exported
knowledge used when developing kernel modules, to resolve the object types
(such as whether the object is a task struct). Meanwhile, kernel developers
often have access to a number of kernel header files (otherwise their modules
may not be compiled). By combining the types resolved from the API argu-
ments and the data structure definitions from the open header files, we can
reach and resolve more kernel data structures.

Scope, Assumptions, and Threat Model. To make our discussion more
focused, we target OS kernels executed atop a 32-bit ×86 architecture. To val-
idate our experimental results with the ground truth, we use the open source
Linux kernels as the testing software1. Regarding the scope of the tap points,
we focus on those that are related to dynamically allocated kernel heap objects.

As alluded earlier, we assume the knowledge of kernel APIs, e.g., the kernel
object allocation function (e.g., kmalloc, and kfree) such that AutoTap can
hook and track the kernel object creation and deletion, and the types of the
arguments of the kernel APIs, which will be used to resolve the kernel object
types. Meanwhile, we assume the access of the header files related to kernel
module development (this is also true for Microsoft Windows), and the data
structure defined in the header files will also be used to type more kernel objects.
AutoTap aims to discover the tap points for introspection in the existing kernel
legal binary code. If there is any injected code, AutoTap cannot tap their
executions.

Overview. We design AutoTap by using a binary code translation based vir-
tual machine monitor (VMM) Pemu [29], which extends Qemu [2] with an
enhanced dynamic binary instrumentation capability. There are three key com-
ponents inside AutoTap: kernel object tracking , object access resolution, and
tap points uncovering ; they work in two phases: an online tracing phase, and an
offline analysis phase (Fig. 1).

1 Note that even though the kernel source code is open, it is still tedious to derive the
tap points manually, and a systematic approach such as AutoTap is needed.

Automatic Uncovering of Tap Points from Kernel Executions 53

Fig. 1. An overview of AutoTap.

In the online phase, starting from the
kernel object creation, kernel object track-
ing tracks the dynamically created ker-
nel objects, their sizes, and their propaga-
tions and indexes them based on the call-
ing context of the object creation for the
monitoring. Whenever there is an access
to these monitored objects, object access
resolution captures the current execution
context, resolves the types of the argu-
ments, resolves the current access (e.g.,
whether it is a read, write, initialization,
allocation, or deallocation), and keeps a
record of the current object access with
the captured execution context if this
record has not been stored yet in the memory. Once we have finished the online
tracing, we then dump the memory meta-data into a log file, and our tap points
uncovering will analyze the log file to eventually derive the tap points. Next, we
present the detailed design and implementation of these components.

3 Design and Implementation

3.1 Kernel Object Tracking

As the focus of AutoTap is to extract the tap points related to the dynamically
allocated kernel objects, we have to first (i) track their life time, (ii) assign a
unique type to each object, (iii) track the object propagation and its size such
that we know to which object the address belongs when given a virtual address,
and (iv) resolve the semantic types of kernel objects. Since our prior system
Argos also need to perform these tasks for its type inference, we reused a lot
of code base to handle kernel object tracking. However, there are still some
differences between AutoTap and Argos on (ii) how we assign syntactic type
to each object and (iv) how we resolve the semantic type of object. Next, we
just describe these differences. More details on (i) how we track object life time
and (iii) resolve the object size can be found in Argos [30].

Assigning a Syntactic Type to Each Object. In general, there are two
standard approaches to convert dynamic object instances into syntactic forms:
(1) using the callsite address of kmalloc, denoted as PCkmalloc to represent
the syntactic object type, or (2) using the callsite-chain of kmalloc, denoted as
CCkmalloc to represent the syntactic object type. The first approach is intuitive
but it cannot capture the case where kmalloc is wrapped. While the second
approach can capture all the distinctive object allocation, it may over classify
the object types since the same type can be allocated in different calling context.

54 J. Zeng et al.

Argos used the first approach since it aims to uncover the general types
(context-insensitive). In AutoTap, we adopt the second approach because we
aim to identify the execution point for the tapping, and these points are usually
context sensitive. For instance, a string is a general type but when it is used
in different contexts (e.g., to represent a machine name or a process name), it
means different type of strings and we may just need to tap a particular type
of string instead of all strings (that is why sometimes we have context-sensitive
tap points). Therefore, we use CCkmalloc to denote the syntactic type for each
dynamic allocated object. The semantic meaning of CCkmalloc will be resolved
later. Also, we use a calling context encoding technique [27] to encode CCkmalloc

with an integer E(CCkmalloc), and store this integer and its corresponding type
with a hash table we call HTtype for easier lookup and decoding.

Resolving the Semantic Type of Object. The syntactic type (CCkmalloc)
assigned to each object is only used to differentiate objects, and it does not tell the
semantics (i.e., the meaning) of the object. Since the tap points we aim to uncover
are associated to each specific kernel object (e.g., task struct), we need to resolve
their semantic types. While Argos can recognize semantics for a number of ker-
nel objects if there are unique rules to derive their meanings under certain syscall
context, it cannot recognize all kernel objects. Therefore, we use a different app-
roach, which is inspired by our another prior system REWARDS [22], a user level
data structure type inference system. In particular, REWARDS infers the seman-
tics of data structures through the use of well-known semantic type information
fromtheargumentand returnvalue of systemcall anduser levelAPIs.Weadopt the
RWEARDS approach to infer the kernel object semantic types from public known
kernel APIs. However, not all objects can be typed from the argument and return
value of these APIs, and therefore we also leverage the object types defined in the
header files for kernel module development and track object point-to relations to
infer more object types. To capture the point-to relation between objects, we use
the same taint analysis approach as in Argos.

Summary. Our kernel object tracking will track the life time of the dynamically
allocated objects with a red-black tree we call RBinstance tree that is used to
store <v, s, Ti, E(CCkmalloc)>, which is indexed by v, where v is the starting
address, s is the corresponding size, Ti is the taint tag for Oi, and E(CCkmalloc)
is the encoded syntactic type of the allocated object. Also, it will maintain a hash
table we call HTtype that uses E(CCkmalloc) as the index key. This HTtype stores
the decoded callsite chain, the resolved semantic type of the objects based on
kernel APIs and available header files, as well as the captured point-to relations
between them. Also, the resolved access context to each field of a particular type
(described next) is also stored in our HTtype.

Automatic Uncovering of Tap Points from Kernel Executions 55

3.2 Object Access Resolution

Fig. 2. An illustration of the three top
level kernel execution contexts.

Once we have captured each kernel
object and its (field) propagations, the
next step is to resolve the execution
context when an instruction is access-
ing our monitored object. Note that
the execution context captures how
and when a piece of data gets accessed.
In general, when a piece of data gets
accessed, under dynamic binary code
instrumentation based VMM, what we
can observe includes: (i) which instruc-
tion is accessing the data, (ii) through
what kind of access (read, or write).
However, such information is still at
too low level, and what we want is the high level semantic information that
includes (i) which execution context (e.g., syscall, interrupt, kernel thread) is
accessing the object and under what kind of calling context, and (ii) what the
concrete operation is with respect to the accessed object (e.g., create, read, write,
initialize, allocation, deallocation). Therefore, we have to bridge this gap.

A kernel execution context in fact has a hierarchical structure and it can be
classified into three layers. From top to bottom, there are syscall level context,
function call level context, and instruction level context. In the following, we
describe how we resolve these contexts and associate them to the accessed kernel
objects.

Resolving Top Level Execution Context. When a given kernel object gets
accessed, we need to determine under which highest level execution context it
is accessed. As shown in Fig. 2, there are three kinds of disjoint highest level
execution contexts:

– (I) Syscall execution context. When a user level program requests a kernel
service, it has to invoke the syscalls. When a syscall gets executed, kernel
control flow will start from the entry point of the syscall, and continue its
execution until this syscall finishes. There is always a corresponding kernel
stack for each process that tracks the return address of the functions called by
this syscall. Therefore, we have to first identify to which process the current
syscall belongs, and identify the entry point and exit point of this syscall.
In ×86, the entry point and exit point of a syscall for Linux platform can
be easily captured by monitoring the syscall enter and exit instructions (e.g.,
sysenter, sysexit, int 0x80, iret). To identify a process context, we use
the base address of kernel stack pointer, i.e., the 19 most significant bits of the
kernel esp, denoted MSB19(esp), since kernel stack is unique to each process
or kernel thread, as what we have done in Argos.
Therefore, as shown in Fig. 2, when an instruction is executed between the
syscall entry (Control Flow Transition ➀, CFT➀ for brevity) and exit point

56 J. Zeng et al.

(CFT➇), if it is not executed in an interrupt handler’s context (discussed
below), and if the context belongs to the running process, then it is classified
the syscall execution context. We will resolve the corresponding syscall based
on the eax value when the syscall traps to the kernel for this particular process.
The corresponding process is indexed by the base address of each kernel stack,
which is computed by monitoring the memory write to the kernel esp. We
also use another RB-tree, and we call it RBsys tree to dynamically keep the
MSB19(esp) and the eax that is the syscall number, for each process such
that we can quickly retrieve the syscall number when given a kernel esp if the
execution is executed inside a syscall.

– (II) Top-half of an interrupt handler execution context. While most
of the time kernel is executed under certain syscall context for a particular
process, there are other asynchronous kernel events driven by the interrupts
and exceptions, and they can occur at any time during the syscall execution.
To respond them, modern OS such as Linux kernel usually splits the interrupt
handlers into top-half that requires an immediate response and bottom-half
that can be processed later [6].
As illustrated in Fig. 2, top half of an interrupt can occur at anytime dur-
ing a syscall execution (e.g., when a time slice is over, a key is stroke, or
a packet is arrived). It starts from a hardware event (CFT➂ which can be
monitored by our VMM), and ends with an iret instruction (CFT➃). The
execution of a top-half is often very short, and it can use the kernel stack of
the interrupted process to store the return address if there is any function call,
or use a dedicated stack for this particular interrupt depending on how the
interrupt handler is implemented. Meanwhile, an interrupt execution can be
nested. Thus, we have to capture the pair of CFT➂ and CFT➃. This can be
tracked by using a stack-like data structure. Through such, the top half of an
interrupt handler can be precisely identified.

– (III) Bottom-half of an interrupt handler execution context, or ker-
nel thread execution. When the response for an interrupt takes much longer
time, kernel often leaves such an expensive execution to dedicated kernel
threads (to execute the bottom half of an interrupt handler) such as pdflush,
ksoftirqd. Therefore, there must be a context switch event, which can be
observed by the kernel stack exchange. Note that CFT➄, CFT➅, and CFT➆
all denotes the context switch event because of the stack exchange. In other
words, as illustrated in Fig. 2, we can actually uniformly treat them as the
syscall context of user level processes with the only difference that they do
not have a syscall entry and syscall exit point.

Resolving Middle Level Execution Context. Having identified the highest
level execution context, we also need to identify the middle level execution con-
text at a function call level that includes which function is executing the current
instruction and the callers of this function. Naturally it leads us to identify the
function call chain. While we can get the call chain by traversing the stack frame
pointer, it requires kernel to be compiled with this information. To make Auto-
Tap more general, we instrument call/ret instruction and use a shadow stack

Automatic Uncovering of Tap Points from Kernel Executions 57

to track the callsite chain. Based on the above three high level disjoint execution
contexts, we maintain the following three kinds of shadow stacks (SS):

– (I) Syscall SS. When a syscall execution (say si) starts, we will create a corre-
sponding SS(si). Then whenever there is a function call under the execution of
si, we additionally push a tuple <f entry addr, f return addr, stack ret offset>
into the corresponding SS(si), and whenever there is a ret executed under this
syscall context, we additionally pop the tuple whose f return addr matches the
return address from the top of SS(si). Note that without this matching check,
there could exist cases that call and return are not strictly paired. Also, the
push/ret of the return address when calling f will still use the original stack.
The reason of tracking the stack ret offset in the original stack is for quickly
retrieving of the entire calling context for context-sensitive tap points, when
given just a kernel stack without instrumenting any call instructions. Then at
any moment, the callsite chain for the current syscall context can be created
by retrieving the value of f return addr in the corresponding kernel stack based
on the location specified by stack ret offset.

– (II) Top-half SS. When a top half of an interrupt handler for interrupt i (say
ii) is executed, we also create a corresponding SS(ii) to track the call chain
for this interrupt context. When the interrupt returns (observed by iret), we
clear this shadow stack. At anytime during the execution of this interrupt,
we similarly build its callsite chain from SS(ii) as what we do in the syscall
context.

– (III) Kernel Thread SS. If the execution is neither in the syscall context, nor
top half of the interrupt handler, then it must be in kernel thread execution
context (or bottom half of an interrupt), say ti. Similarly, we will create a
corresponding SS(ti) for each of this context. As such, we can retrieve the
callsite chain when a kernel object is accessed under this context.

It should be noted that at runtime there can be multiple instances of each of
these SS, because there can be multiple processes, interrupts, and kernel threads.
We will extract the callsite chain from the corresponding one based on the value
of MSB19(esp).

Resolving Low Level Execution Context. Once we have resolved all these
high level execution contexts, our final step is to resolve the low level context
(e.g., read/write) of how an object is accessed and keep a record in the in-memory
meta-data (i.e., our HTtype). Currently, we focus on seven categories of accesses
as presented in Table 1.

Specifically, whenever there is an access to the monitored kernel object Oi

(including its k-th field Fk and the propagations), we will insert an entry if this
has not been inserted to the field Fk’s access list that is stored in HTtype, which
is indexed by the encoded syntactic type of Oi (i.e., E(CCkmalloc)), and this
entry consists of <AT,EX> where AT denotes the access types of the seven
different categories, and EX denotes the current execution context.

58 J. Zeng et al.

Table 1. Resolved access types based on the behavior.

Category Behavior

Creation (Oi) Oi is created by calling kmalloc

Deletion (Oi) Oi is freed by calling kfree

Read (Oi, Fj) A memory read field Fj of Oi

Traversal (Oi, Fj) Read (Oi, Fj) ∧ Fj ∈ pointer field

Write (Oi, Fj) A memory write to field j of Oi

Initialization (Oi, Fj) Write (Oi, Fj) ∧ first time write to Fj

Others Other contexts, e.g., periodical access

To save both mem-
ory and disk space of
our meta-data, we also
encode EX. Basically,
EX is composed with
(1) the low level access
behavior that includes the
program counter (PC) of
Read, Traversal, Write,
Initialization of (Oi, Fk), or the entry address of kmalloc or kfree if it is
object creation/deletion, as well as the encoding of these accesses; (2) middle
level callsite chain and the corresponding offset in the running kernel stack to
locate each function’s return address; and (3) the top level context that is either
a syscall number, or an interrupt number, or the value of MSB19(esp) of ker-
nel thread. We also encode EX with an integer and use a hash table to store
the mapping between the integer and the concrete execution context. Our tap
points uncovering will scan the dumped meta-data to eventually uncover the tap
points.

3.3 Tap Points Uncovering

Once collected the record describing how a particular type of monitored kernel
object is accessed, the final step of AutoTap is to perform an offline analysis
to further derive the tap points for each type of kernel object. At a high level,
for a given syntactic type of a kernel object, we traverse our memory-dumped
HTtype and locate its field access context <AT,EX>. For each EX, we rebuild
a context-chain according to our encoding. The top of the chain is the highest
level execution context (i.e., syscall, interrupt, or kernel thread), followed by the
callsite chain. Examples of such context-chains are illustrated in Fig. 3. After
having the context-chain, we are then ready to extract the tap points.

Fig. 3. Enumerated and simplified cases for tap points uncovering. Note that si denotes
ith syscall, ii denotes ith interrupt, ti denotes ith kernel thread, f, g, h etc. all denotes
function calls, Ti represents the syntactic type, and Ti[m] denotes the field m of Ti.

Automatic Uncovering of Tap Points from Kernel Executions 59

Introspection Related Tap Points. Among all the tap points, those related
to object creation, deletion, traversal, and field read are of particular interest
to introspection, especially for the detection of hidden kernel objects. In the
following, we present how we uncover these tap points:

– Object Creation and Deletion. Given a specific syntactic type Ti (note
that syntactic type is used to find the tap points, and semantic type is used to
pinpoint the one we want) for a kernel object, we scan the context-chain, if the
leaf node of the chain creates/deletes a kernel object with the matched type,
then the tap points in this context chain will be included in the result. Ideally,
if the leaf node is unique among all the types, we can directly output the
PC that calls the leaf function as the corresponding tap points for this type.
However, these functions might also create other types of object. Therefore,
we will scan the context-chain again, and compare with other types to produce
the final result.
Specifically, there are at most three cases for the creation and deletion related
tap points. One is the leaf node that is unique among all observed types
(Fig. 3(a)), and as discussed we directly output the call-site PC of the leaf
function as the tap points (function h and function k in this case) and these
tap points are context-insensitive. Otherwise, we scan further and compare
their parent functions (Fig. 3(b) and (c)). If they differ at their closest parent
function, then we use the call-chain from the diffed parent function to the leaf
node (Fig. 3(b)) and use the chained call-site PC as the tap points and these
tap points are context-sensitive; otherwise we will scan until we reach their root
node, and in this case we will use the entire context chain (Fig. 3(c)). Recall
that there must exist a unique callchain for each syntactic object (Sect. 3.1).
Therefore, we will not have a case in which we cannot find the unique context
chain even though we have reached the root.

– Object Traversal. The tap points for object traversal are critical for intro-
spection, especially if we aim to identify the hidden objects. To identify such
tap points, we scan the context chain: if we observe there is a pointer field
read from object Oi to reach object Oj , we conclude there is an object traver-
sal in the observed function with the tap point of the PC that performs the
read operation. If this PC only accesses this particular type of object, we just
use this PC as the tap points; otherwise, we will use the call-chain as what
we do in object creation/deletion tap points discovery. Also, we can identify
recursive type traversal if both Oi and Oj share the same type, otherwise it
will be a non-recursive traversal.

– Object Field Read. Pointer field read can allow us to identify the object
traversal tap points. Non pointer field can also lead to certain interesting tap
points. Similarly to how we identify object traversal tap points where we focus
on the pointer field, we will also derive all the non pointer field read tap points.

Other Tap Points. In addition, there are also other types of tap points, such
as object field initialization and object field (hot) write. Though these tap points
may not be directly used in introspection, they could be useful for kernel function

60 J. Zeng et al.

reverse engineering in general. AutoTap does support identify these tap points.
For instance, it becomes straightforward to identify the initialization point (the
first time memory write). The only issue is there may not exist a centralized func-
tion that initializes all the field of an object. For example, as shown in Fig. 3(d),
the leaf node may just initialize partial fields of an object. Therefore, we need to
hoist the field initialization information to their parent functions. Such hoist opera-
tion is a recursive procedure and we will use the lowest parent function that cannot
expand the scope further of the fields of Ti as the initialization tap points for the
observed field. We are also interested in several other particular interesting types of
tap points, such as the periodic functions that are executed in the timer interrupts.
We will demonstrate how to use these tap points in Sect. 5.

4 Evaluation

We have implemented AutoTap. The online analysis component is built atop
Pemu [29] by reusing a large amount of code base from Argos [30], and the
offline component is built using python. In this section, we present our evaluation
result.

Experiment Setup. The input to AutoTap is the kernel API specifica-
tion, the available kernel data structure definitions for kernel module devel-
opers, and the test cases to run the kernel. We acquired kernel API specifica-
tion, namely, function name, the type of its arguments and return values from
/lib/modules/KERNEL VERSION/build. We extracted the kernel data structure
definitions from the available kernel header files. In order to intercept the kernel
APIs for object tracking and semantic type inference, we identified their function
entry addresses from /proc/kallsyms.

 0

 500

 1,000

 1,500

 2,000

 2,500

2.
6.

27
.1

8

2.
6.

28

2.
6.

29

2.
6.

30

2.
6.

31
.8

2.
6.

32
.8

2.
6.

33

2.
6.

38
.8

3.
0.

52

3.
2.

58

m
ea

n

#S
yn

ta
ct

ic
 D

at
a

St
ru

ct
ur

e

Linux Kernel

Untyped
Typed by Header Files
Typed by Kernel API

Fig. 4. Type resolution result for each kernel

To run the kernel, we
used the test cases from
the Linux-test-project [1],
as what we have done in
FpCk [14]. We took 10
recent released Linux ker-
nels, presented in the first
column of Table 2, as the
guest OS for the test, and
executed them inside our
VMM. The testing host
OS runs ubuntu-12.04
with kernel 3.5.0-51-
generic. The evaluation
was performed on a machine
with a 64-bit Intel Core i-7
CPU with 8 GB physical memory.

To identify a tap point for a particular type of object, AutoTap first derives
all the tap points for each syntactic type, and then us0es the resolved semantic

Automatic Uncovering of Tap Points from Kernel Executions 61

type (e.g., task struct) associated with the syntactic type to eventually pin-
point the tap points of introspection interest. Therefore, we first present the
result regarding how AutoTap performed to identify the tap points for the
syntactic type, and then the tap points for the semantic type.

Result for Syntactic Types. We first report how our kernel object tracking
component performed in Fig. 4. As shown in this figure, our kernel object tracking
component identifies on average 1.8 thousand unique syntactic types. We can see
about 57 % of them can be semantically typed by using the kernel APIs. With the
public open kernel module development header files, it can type additionally 35 %
of them. In other words, close to 90 % of the data structures can be semantically
typed.

Next, we report how our second and third components performed in Table 2.
Specifically, the result of our object access resolution is reported from the 2nd
column to the 7th column. The number of the top level context, namely syscall
context, is reported in the 2nd column, interrupt in the 3th column, and kernel
thread in the 4th column. We can notice that on average, AutoTap observed 219
system call contexts, 7 interrupt/exception contexts (e.g., page fault, timer,
keyboard, device-not-available), and 29 kernel thread contexts. Regarding
the middle level context, we report the total number of function call-site chain in
the |FC| column, and there are 104,971 unique call-site chains associated with
these traced types. Finally, for the lowest level context, we report the total num-
ber of field read tap points in |PCR| and write tap points in |PCW | columns. We
can notice that there is a significant large number of the unique field read/write
access contexts. If we perform manual analysis, it is very challenging to system-
atically identify them all.

Finally, we report the statistics of the tap points uncovered for the introspec-
tion in the rest columns of Table 2. In total, we report five categories of intro-
spection related to tap points: object creation, object deletion, object recursive
type traversal (RTraversal), object non-recursive type traversal (NTraversal), and
object field read (FRead). For each category, we report the number of the tap
points that are context-insensitive (i.e., we can directly use the corresponding
PC as the tap points) in column |PC|, and context-sensitive (i.e., we need to
inspect the call-chain in the corresponding stack frame when the PC is executed)

Table 2. Overall result of tap points uncovered for each tested kernel.

Object Access Resolution Tap Points Uncovered
Kernel Creation Deletion RTraversal NTraversal FRead|Sys| |Int| |Thd| |FC| |PCR| |PCW | |PC| |FC| |PC| |FC| |PC| |FC| |PC| |FC| |PC| |FC|

2.6.27.18 219 7 23 77634 308643 136729 0 1646 47 1507 89 2408 1402 21585 4209 61632
2.6.28 218 7 22 73285 313488 134027 0 1492 61 1452 89 2313 1435 18460 4235 54706
2.6.29 216 7 29 69547 313442 132004 0 1436 59 1485 90 2375 1515 18251 4102 56866
2.6.30 217 7 28 40457 319834 136593 0 1585 62 1506 97 2341 1598 20303 4367 62927

2.6.31.8 217 7 28 74121 346884 147573 0 1666 66 1560 97 2497 1482 21679 4159 74504
2.6.32.8 218 7 31 92690 450004 194353 0 1566 54 1365 93 2322 1500 18192 3943 62115
2.6.33 217 7 31 85544 412563 176407 0 1402 64 1274 94 2208 1221 14084 4082 65531

2.6.38.8 217 7 33 91438 422170 185327 0 1573 56 1293 97 2479 1541 18881 3838 62361
3.0.52 222 7 36 205984 797643 238132 0 1915 68 1768 113 2695 1695 20538 4445 66432
3.2.58 227 7 35 239018 898387 270936 0 2377 71 2085 109 3967 1739 27619 4373 89204

Average 219 7 29 104971 458305 175207 0 1654 62 1545 97 2560 1672 19959 4175 65628

62 J. Zeng et al.

in column |FC|. We can notice that there are many context sensitive tap points
because different syntactic types (which is from the same semantic type) use the
same PC for the allocation, but in different calling context. We can also notice
some tap points can be used to delete different type of object (e.g., in Linux ker-
nel 2.6.32.8, there are 1566 syntactic types allocated, but it only requires 1365
deletion tap points), and there are too many object traversal tap points, which
proves it will be extremely difficult to identify them with just purely manual
analysis. Regarding how to use the derived tap points, we present a case study
in Sect. 5.

Result for Semantic Types. As shown in Table 2, there are too many tap
points. To really use them for introspection, we have to select the ones of our
interest. Therefore, we have to get the tap points based on the semantic types.
We take Linux-2.6.32.8 as an example, and describe in greater details how this
is achieved.

For Linux-2.6.32.8, as our syntactic type is an over-split of the semantic types
(i.e., multiple syntactic types can correspond to just one semantic type), our
technique eventually resolved the semantic types of 87.6 % (1372/1566) of the
syntactic types. Once we have resolved the semantic types, we have to iterate our
tap points uncovering again for each semantic types using the same algorithm
described in Sect. 3.3.

Take task struct as an example, before applying the semantic types, we
acquired 6 different syntactic types of task struct, namely, each of these is
created in a different call-chain. The (64-bit) integer encoding of these syntac-
tic types are presented in the first column of Table 3. For object creation, each
of these syntactic types has a context-sensitive tap point, and none of them
is context-insensitive; similar result also applies to object deletion. For recur-
sive traversal, we observed the 3rd syntactic type of task struct has a heavy
recursive traversal. Compared with other syntactic type, this one has many more
task struct instances. For non recursive type traversal, each syntactic type has
a lot of context-sensitive pointer read. Finally, for the object field (i.e., non-
pointer) read, we can notice most of their tap points are context sensitive.

Table 3. Tap points statistics for 6 different syntactic types of task struct.

Syntactic type Creation Deletion RTraversal NTraversal FREAD

|PC| |FC| |PC| |FC| |PC| |FC| |PC| |FC| |PC| |FC|
4dd23b5e689e2ad7 0 1 0 1 0 9 3 102 1 299

536881ec388d6516 0 1 0 1 1 7 20 225 36 420

7554a8d7acf81704 0 1 0 1 41 131 403 402 435 563

8649536d24938b96 0 1 0 1 0 0 0 304 1 437

9ac37673946479aa 0 1 0 1 0 30 0 136 14 318

9d41a458fa47a47b 0 1 0 1 0 0 2 289 0 448

Automatic Uncovering of Tap Points from Kernel Executions 63

Table 4. The statistics for the uncovered tap points for the observed semantic types
of linux-2.6.32.8 in slab/slub allocators

Category Semantic #Syntactic Creation Deletion RTraversal NTraversal FRead

Type Type |PC| |FC| |PC| |FC| |PC| |FC| |PC| |FC| |PC| |FC|
task_struct 6 1 0 1 0 98 93 725 6 1024 24

pid 6 1 0 1 0 2 1 15 3 50 1
Process task_delay_info 6 1 0 1 0 0 0 0 0 24 4

task_xstate 7 2 0 1 0 0 0 0 0 38 1
taskstats 2 1 0 1 0 0 0 0 0 27 0

anon_vma 7 1 0 1 0 0 0 5 1 8 1
Memory mm_struct 4 2 0 1 0 0 0 21 8 235 32

vm_area_struct 44 7 0 2 0 84 94 113 1 395 1
TCP 3 0 1 0 1 7 0 74 8 1023 137
UDP 2 0 1 0 1 0 0 0 0 0 84
UNIX 4 0 1 0 1 8 0 29 4 118 36

neighbour 7 1 0 1 0 2 0 4 0 113 15
inet_peer 1 1 0 1 0 0 0 0 0 23 1

Network rtable 7 1 0 1 0 0 0 11 0 155 3
nsproxy 1 1 0 1 0 0 0 1 0 6 0

request_sock_TCP 2 1 0 1 0 0 0 1 0 70 8
skbuff_fclone 7 0 1 0 1 0 0 76 78 89 161
skbuff_head 53 1 1 0 1 1 0 152 78 148 161
sock_alloc 4 1 0 1 0 0 4 64 2 59 34

bio-0 94 0 1 0 1 3 0 18 0 123 30
biovec-16 5 0 1 0 1 0 0 0 0 0 26
biovec-64 4 0 1 0 1 0 0 0 0 1 30
io_context 17 1 0 1 0 0 0 7 2 15 7

request 60 0 1 0 1 13 99 22 0 164 2
dentry 85 1 0 1 0 80 4 321 4 197 10

ext2_inode_info 4 1 0 1 0 6 17 74 12 136 262
ext3_inode_info 21 1 0 1 0 6 19 38 35 580 348

File fasync_struct 1 1 0 1 0 0 0 1 0 1 1
file_lock 10 1 0 1 0 11 6 17 0 113 3

files_struct 4 1 0 1 0 0 3 25 10 41 41
file 33 1 0 1 0 4 5 227 7 352 4

fs_struct 4 1 0 1 0 0 0 9 2 44 3
inode 5 1 0 1 0 2 5 5 8 15 113

journal_handle 124 1 0 1 0 0 0 28 0 25 0
journal_head 82 1 0 1 0 19 0 66 0 50 0
proc_inode 9 1 0 1 0 0 0 6 3 33 95
sysfs_dirent 36 1 0 1 0 12 0 7 0 31 0

vfsmount 4 1 0 1 0 31 0 21 8 63 3
IPC mqueue_inode_info 1 1 0 1 0 0 0 15 2 37 49

shmem_inode_info 8 1 0 1 0 0 4 0 16 107 194
fsnotify_event 19 1 0 1 0 1 0 8 2 24 2

inotify_event_private_data 19 2 0 1 0 0 0 3 0 2 0
Signal inotify_inode_mark_entry 1 1 0 1 0 1 0 7 1 25 1

sighand_struct 6 1 0 1 0 0 0 0 0 66 4
signal_struct 6 1 0 1 0 0 12 11 4 265 36

sigqueue 17 1 0 1 0 4 2 8 2 8 0
Security cred 41 2 0 1 0 0 3 28 3 352 1

key 4 1 0 1 0 0 10 4 0 53 3
buffer_head 61 1 0 1 0 20 0 21 0 423 0

cfq_io_context 17 1 0 1 0 2 0 15 3 39 1
cfq_queue 15 1 0 1 0 0 0 17 5 106 1

Other idr_layer 12 1 0 3 0 5 5 1 3 19 3
names_cache 58 2 0 3 0 0 0 0 0 16 10

k_itimers 1 1 0 1 0 1 0 12 0 24 24
radix_tree_node 56 1 0 1 0 10 3 2 3 22 9

jbd_revoke_record_s 14 1 0 1 0 1 0 0 0 7 0

64 J. Zeng et al.

After we apply the resolved semantic type to each syntactic type and re-
execute our tappoints uncovering,many of the context-sensitive tappoints become
context-insensitive. For instance, for task struct, as illustrated in the first row
of Table 4, these 6 syntactic types get actually merged into one, and we then can
directly use the PC for object creation and deletion without inspecting their call-
stack. Due to space reason, we report the tap points uncovering statistics for some
of the resolved semantic types in Table 4. In total, there are over 90 resolved seman-
tics, and we only report 56 of them that are visible in the slab allocators.

Performance Result. Regarding the performance of AutoTap, for each tested
kernel, our online analysis took around 12 h on average to finish the testing bench-
mark, and our offline analysis took just a few minutes to process the log files and
produce the final tap points. The dumped log file size is around 500 MB (thanks to
our encoding). The reason why our online analysis took so long is because we have
one thousand test cases to execute and also we have to perform dynamic binary
instrumentation to track object and field propagations in our instrumented VMM.

5 Security Application

In this section, we demonstrate how to use our tap points for a particular type
of introspection application—hidden process detection. Typically when a system
is compromised, it is often very common for attackers to hide the presence of
their attack and also leave certain invisible services for future privileged access.
To achieve this, one simple way is to keep running of a privileged process, and
hide it from the system administrators through rootkit attacks.

At a high level, there are three different categories of rootkits for process
hiding [18,25]. The first category directly modifies program binaries such as ps,
pslist, etc. The second category hooks into the call path between a user appli-
cation and the kernel by modifying system libraries (e.g., glibc), dynamic linker
structures (plt/got table), system call tables, or corresponding operating system
functions that report system status [28]. The third category manipulates kernel
data structures using the so-called direct kernel object manipulation (DKOM) [12]
attack, such as removing the process descriptor (e.g., task struct) from the
accounting list shown by ps.

Our Approach. Since AutoTap has extracted the tap points related to the
task struct, especially the creation/deletion and traversal tap points, it would
enable the monitoring and detection of the hidden processes. One intuitive app-
roach is to use the tap point that traverses all the elements in the accounting
task list. However, we did not find such a tap point that iterates all the element
of the task list. In fact, utility command such as ps will not traverse the account-
ing list to show all the running process, and instead it extracts the process list
from the /proc file system [13].

While there are many traversal tap points for the task struct, as shown
in Table 3, there must be some traversal tap points executed by the schedule
function. Note that schedule function is very easy to identify as it is always

Automatic Uncovering of Tap Points from Kernel Executions 65

executed in the top half of the timer interrupt handler (though it can be called
in various other places), and meanwhile there must be a stack exchange (a kernel
esp write operation). Therefore, if we can identify the task struct accessed by
the schedule function, and if we can know to which task struct instance the
CPU switches, then we can identify the task struct that is to-be-executed by
the CPU.

However, we have to solve another challenge—how to identify the to-be-
executed task struct instance given that schedule function may access a
number of other task struct instances to pick up the next to-be-executed one
(defined by the policy) for the execution. Fortunately, as we have noted, when
performing a context switch, there must be a stack pointer exchange, and the
new stack pointer must come from the to-be-executed process. Typically, this
stack pointer is stored in task struct. Therefore, by monitoring where the stack
pointer comes from, we identify the to-be-executed task struct instance. Recall
that we have tracked all field (and its propagation) read, and we just need to
identify this particular field.

More specifically, we found 123 Object Traversal tap points for task struct
in the context of schedule function. In particular, there are 76 recursive and 26
non-recursive traversal tap points. All of them are context insensitive. Part of
the reason we believe is schedule function is very unique and other functions
will not call it for other purposes other than scheduling. Among these 123 tap
points, we know one of them must be of our interest since we aim to capture
the task struct traversal. Also, we found 121 task struct Field Read, all of
which are also context insensitive. By looking at these field read tap points,
we found there is a particular field read tap point that uses the stack pointer
(i.e., 0xc125e3b1:mov 0x254(%edi),%esp). Interestingly, the base register edi
here actually holds the address of the to-be-executed task struct. Therefore,
we actually do not need the traversal tap points and we just need to hook this
tap point, because we can directly identify the to-be-executed process from edi.

From the above analysis, we can notice that with AutoTap, we have sig-
nificantly reduced the search space of the instruction of our interest from tens
of thousands (4,422 instructions in the context of schedule function in which
a manual analysis has to analyze) to only a few hundred (123 object traversal,
and 121 field read). With insight of how context switch is performed, we fur-
ther reduce the search space to only a few instructions (it is 0xc125e3b1:mov
0x254(%edi),%esp in our case). This is just one case we demonstrated for
task struct. Regarding many other kernel data structures, our system also
applies even though we may have to consider certain data structure specific
insight. For instance, if we want to detect hidden socket, we can use the
insight that socket must be accessed at system call send/sendto/write or
recv/recvfrom/read context.

66 J. Zeng et al.

Table 5. Process hiding rootkits

Rootkits Process hiding mechanism

ps hide Fake ps binary with process hiding function

libprocesshider Override libc’s readdir to hide process

LinuxFu Hide the process by deleting its task struct
from task list

The Detection Algo-
rithm. We use a cross-
view comparison approach
that compares the CPU
time execution from inside
and outside to detect the
hidden processes. Note
that CPU time metric is
the most reliable source (tamper-proof) for rootkit detection. In particular, to
detect rootkit, we first get an inside view by running ps command, and an out-
side view by counting the CPU TIME for the running process. In particular, the
inside view will show the running process PID, TTY, TIME, and CMD. Among them,
TIME is very critical and it is very challenging (nearly impossible) for attacker
to forge a value that will be equivalent to the one counted at the hypervisor
introspection layer.

To count the executed time for a particular process, we hook the tap points of
task struct creation at 0xc102c8be and deletion at 0xc102c7cc by replacing
them with an “int 3” instruction to trap to the hypervisor layer. Then we hook
the tap point “0xc125e3b1:mov 0x254(%edi),%esp” to get the task struct
of the to-be-executed process from edi and then we count its CPU execution
time from this moment to the next context-switch point. We keep a hash table
to store the accumulated CPU time for each process, and meanwhile we store
their PID field. Then right after user running ps to get the inside view, we also
print the list of the live process with the PID and their CPU TIME. If there is a
discrepancy, it indicates there is a hidden process. We can notice while attacker
can change/forge all the PID field, it is impossible for them to forge the correct
CPU TIME to mislead the outside view. That is why we call TIME is a tamper-
proof attribute for a particular process.

Experimental Result. We have implemented the above detection algorithm
in KVM-2.6.37 and tested with a guest Linux kernel 2.6.32.8. We only need to
hook 3 tap points: creation, deletion and field propagation read. We used three
rootkits to test our detection capability. As show in Table 5, these rootkits cover
all the three basic tricks to hide a particular process. Through our cross view
comparison, we have successfully detected all of these hidden processes.

Regarding the performance impact of our rootkit detector, we used a set of
benchmarks including SPEC2006, Apache, and 7zip to evaluate the performance
overhead introduced by our detection at KVM hypervisor layer, and we com-
pared the results on the Native-KVM and our Tapping-KVM. As expected, there
is not noticeable performance overhead for these benchmarks due to our light-
weight instrumentation at the hypervisor layer. We measured that the average
overhead for them is about 2.7 %.

Automatic Uncovering of Tap Points from Kernel Executions 67

6 Limitations and Future Work

First and foremost, AutoTap uses dynamic analysis to uncover the tap points
and its effectiveness relies on the coverage of the dynamic analysis. Therefore, any
kernel path coverage techniques (e.g., guided-fuzzing) would improve AutoTap.
On the other hand, we can also notice that sometimes an incomplete coverage
can still lead to a complete uncovering of the tap points. For instance, as shown
for the task struct creation/deletion tap points, while we may not be able to
exercise all the kernel path and find out all (context-sensitive) tap points, we
can notice that these tap points all eventually become context-insensitive and
we can just use the PC that creates and deletes the task struct instance as the
tap point.

Second, currently AutoTap only reveals the object creation and deletion,
field read, and object traversal tap points and demonstrates their use cases.
We believe in addition to these tap points, there will be also other useful ones.
Another future effort is to uncover more tap points and investigate new applica-
tions. A possible immediate future work is to identify the hot (or cold) read/write
field tap points, namely, frequently read/write field, which might be useful to
identify the likely-invariants (e.g., a field never gets changed) of object field. The
other possible use case is to detect the hidden socket by using our tap points.

Third, when kernel has address space layout randomization (ASLR) enabled
(note that since kernel version 3.14, Linux began to randomize kernel address
space), the tap points we discovered from dynamic execution might not work in
other executions. An immediate fix for this problem is to integrate our recent ker-
nel ASLR derandomization effort [16], which exploited using various signatures
from kernel code and data to derandomize the kernel address space.

Finally, while we have demonstrated our techniques working for Linux kernel,
we would like to validate the generality of our system with other kernels. We plan
to extend our analysis to FreeBSD, since it is also open source and we can validate
our results easily. Eventually, we also would like to test our system with the closed
source OS kernel such as Microsoft Windows. These are other future works.

7 Related Work

Tap Points Uncovering. Recently, Dolan-Gavitt et al. [10] presented TZB, the
first system that can mine (memgrep) the memory access points for user level
applications, to identify the places for active monitoring. While TZB and Auto-
Tap share similar goal (TZB directly inspires AutoTap), we focus on different
applications and use different techniques. Specifically, TZB focused on the user
level applications such as web browser, whereas AutoTap exclusively focused
on OS kernel. TZB starts from visible strings (memgrep type of approach can
apply here), whereas AutoTap faces diversified, many non-string data struc-
tures in OS kernel and it starts from syntactic type of kernel object and then
semantic type and then execution context to eventually derive the tap points for
introspection.

68 J. Zeng et al.

Data Structure Reverse Engineering. Over the past decade, there are signif-
icant efforts on data structure reverse engineering, or more broadly type inference
with executables [7]. Earlier attempts include aggregate structure identification
(ASI) [23], value set analysis (VSA) [3,24]. Recently, Laika [9], REWARDS [22],
TIE [20], Howard [26], Argos [30], and PointerScope [31] all aim to infer the (cer-
tain) data structure types from binary code. To infer the semantic type of data
structures, while AutoTap uses the basic approach proposed in REWARDS, it
extends it to OS kernels. Also, it combines other knowledge such as the data
structure definitions for kernel driver development to resolve more semantic
types, because of the large amount of point-to related kernel data structures.
However, REWARDS only uses the type of arguments and return values from
standard libraries for the inference.

VirtualMachine Introspection. VMI [15] is a security analysis technique that
pushes the traditional in-box analysis into the outside hypervisor layer. It has been
proposed as an effective means for kernel rootkit detection (e.g., [8,11,12,17] and
malware analysis (e.g.,. [19,25]). While there are a number of efforts of using VMI
ormemory analysis technique (e.g., [5,8,21]) for hidden process detection (e.g., [11,
17,18]), in this work we enrich these knowledge with a tamper-proof approach by
applying the tap points related to process descriptor and build a robust hidden
process detection tool.

8 Conclusion

We have presented AutoTap, the first system that can automatically uncover
the tap points of kernel objects of introspection interest from kernel executions.
Specifically, starting from the interface of system call, the exported kernel APIs,
and the data structure definitions for kernel driver developers, AutoTap auto-
matically tracks kernel objects, resolves their kernel execution context, and asso-
ciates the accessed context with the objects, from which to derive the tap points
based on how an object is accessed. The experimental results with a number
of Linux kernel binaries show that AutoTap is able to automatically uncover
all the possible observed tap points for a particular type of object, which would
be very challenging to achieve with manual analysis. We have applied the tap
points uncovered by AutoTap to build a novel hidden process detection tool
that can capture all the existing attacks including the DKOM based with only
2.7 % overhead on our tested benchmarks.

Acknowledgement. We thank the anonymous reviewers for their invaluable feed-
back. This research was partially supported by AFOSR under grant FA9550-14-1-0119
and FA9550-14-1-0173, and NSF CAREER award 1453011. Any opinions, findings, con-
clusions, or recommendations expressed are those of the authors and not necessarily of
the AFOSR and NSF.

Automatic Uncovering of Tap Points from Kernel Executions 69

References

1. Linux test project. https://github.com/linux-test-project
2. QEMU: an open source processor emulator. http://www.qemu.org/
3. Balakrishnan, G., Reps, T. Analyzing memory accesses in ×86 executables. In:

CC, March 2004
4. Bauman, E., Ayoade, G., Lin, Z.: A survey on hypervisor based monitoring:

approaches, applications, and evolutions. ACM Comput. Surv. 48(1), 10:1–10:33
(2015)

5. Bianchi, A., Shoshitaishvili, Y., Kruegel, C., Vigna, G.: Blacksheep: detecting com-
promised hosts in homogeneous crowds. In: Proceedings of the 2012 ACM Con-
ference on Computer and Communications Security (CCS 2012), Raleigh, North
Carolina, USA, pp. 341–352 (2012)

6. Bovet, D., Cesati, M.: Understanding The Linux Kernel. Oreilly & Associates Inc.,
Sebastopol (2005)

7. Caballero, J., Lin, Z.: Type inference on executables. ACM Comput. Surv. 48(4),
65:1–65:35 (2016)

8. Carbone, M., Cui, W., Lu, L., Lee, W., Peinado, M., Jiang, X.: Mapping kernel
objects to enable systematic integrity checking. In: The 16th ACM Conference
on Computer and Communications Security (CCS 2009), Chicago, IL, USA, pp.
555–565 (2009)

9. Cozzie, A., Stratton, F., Xue, H., King, S.T.: Digging for data structures. In:
Proceeding of 8th Symposium on Operating System Design and Implementation
(OSDI 2008), San Diego, CA, pp. 231–244, December 2008

10. Dolan-Gavitt, B., Leek, T., Hodosh, J., Lee, W.: Tappan zee (north) bridge: mining
memory accesses for introspection. In: Proceedings of the ACM Conference on
Computer and Communications Security (CCS) (2013)

11. Dolan-Gavitt, B., Leek, T., Zhivich, M., Giffin, J., Lee, W.: Virtuoso: narrowing the
semantic gap in virtual machine introspection. In: Proceedings of the 32nd IEEE
Symposium on Security and Privacy, Oakland, CA, USA, pp. 297–312 (2011)

12. Dolan-Gavitt, B., Srivastava, A., Traynor, P., Giffin, J.: Robust signatures for
kernel data structures. In: Proceedings of the 16th ACM Conference on Computer
and Communications Security (CCS 2009), Chicago, Illinois, USA, pp. 566–577.
ACM (2009)

13. Fu, Y., Lin, Z.: Space traveling across VM: automatically bridging the semantic gap
in virtual machine introspection via online kernel data redirection. In: Proceedings
of 33rd IEEE Symposium on Security and Privacy, May 2012

14. Fu, Y., Lin, Z., Brumley, D.: Automatically deriving pointer reference expressions
from executions for memory dump analysis. In: Proceedings of the 2015 ACM
SIGSOFT International Symposium on Foundations of Software Engineering (FSE
2015), Bergamo, Italy, September 2015

15. Garfinkel, T., Rosenblum, M.: A virtual machine introspection based architecture
for intrusion detection. In: Proceedings Network and Distributed Systems Security
Symposium (NDSS 2003), February 2003

16. Gu, Y., Lin, Z.: Derandomizing kernel address space layout for introspection and
forensics. In: Proceedings of the 6th ACM Conference on Data and Application
Security and Privacy. ACM, New Orelans (2016)

17. Jiang, X., Wang, X., Xu, D.: Stealthy malware detection through VMM-based
out-of-the-box semantic view reconstruction. In: Proceedings of the 14th ACM
Conference on Computer and Communications Security (CCS 2007), Alexandria,
Virginia, USA, pp. 128–138. ACM (2007)

https://github.com/linux-test-project
http://www.qemu.org/

70 J. Zeng et al.

18. Jones, S.T., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.: VMM-based hidden
process detection and identification using lycosid. In: Proceedings of the Fourth
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environ-
ments (VEE 2008), Seattle, WA, USA, pp. 91–100. ACM (2008)

19. Lanzi, A., Sharif, M.I., Lee, W.: K-tracer: a system for extracting kernel malware
behavior. In: Proceedings of the 2009 Network and Distributed System Security
Symposium, San Diego, California, USA (2009)

20. Lee, J., Avgerinos, T., Brumley, D., TIE: principled reverse engineering of types
in binary programs. In: NDSS, February 2011

21. Lin, Z., Rhee, J., Zhang, X., Xu, D., Jiang, X. SigGraph: Brute force scanning
of kernel data structure instances using graph-based signatures. In: Proceedings
of the 18th Annual Network and Distributed System Security Symposium (NDSS
2011), San Diego, CA, February 2011

22. Lin, Z., Zhang, X., Xu, D.: Automatic reverse engineering of data structures from
binary execution. In: Proceedings of the 17th Annual Network and Distributed
System Security Symposium (NDSS 2010), San Diego, CA, February 2010

23. Ramalingam, G., Field, J., Tip, F.: Aggregate structure identification and its appli-
cation to program analysis. In: POPL, January 1999

24. Reps, T., Balakrishnan, G.: Improved memory-access analysis for ×86 executables.
In: CC, March 2008

25. Riley, R., Jiang, X., Xu, D.: Multi-aspect profiling of kernel rootkit behavior. In:
Proceedings of the 4th ACM European conference on Computer systems (EuroSys
2009), Nuremberg, Germany, pp. 47–60 (2009)

26. Slowinska, A., Stancescu, T., Bos, H.: Howard: a dynamic excavator for reverse
engineering data structures. In: Proceedings of the 18th Annual Network and Dis-
tributed System Security Symposium (NDSS 2011), San Diego, CA, February 2011

27. Sumner, W.N., Zheng, Y., Weeratunge, D., Zhang, X.: Precise calling context
encoding. In: Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering, (ICSE 2010), Cape Town, South Africa, vol. 1, pp. 525–534.
ACM (2010)

28. Wang, Z., Jiang, X., Cui, W., Ning, P.: Countering kernel rootkits with lightweight
hook protection. In: Proceedings of the 16th ACM Conference on Computer and
Communications Security (CCS 2009), Chicago, Illinois, USA, pp. 545–554 (2009)

29. Zeng, J., Fu, Y., Lin, Z. Pemu: a pin highly compatible out-of-VM dynamic binary
instrumentation framework. In: The 11th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environment (VEE 2015), Istanbul, Turkey,
March 2015

30. Zeng, J., Lin, Z.: Towards automatic inference of kernel object semantics from
binarycode. In: Proceedings of the 18th International Symposium on Research in
Attacks, Intrusions and Defenses (RAID 2015), Kyoto, Japan, November 2015

31. Zhang, M., Prakash, A., Li, X., Liang, Z., Yin, H.: Identifying and analysing pointer
misuses for sophisticated memory-corruption exploit diagnosis. In: NDSS, February
2012

	Automatic Uncovering of Tap Points from Kernel Executions
	1 Introduction
	2 System Overview
	3 Design and Implementation
	3.1 Kernel Object Tracking
	3.2 Object Access Resolution
	3.3 Tap Points Uncovering

	4 Evaluation
	5 Security Application
	6 Limitations and Future Work
	7 Related Work
	8 Conclusion
	References

