
Improving Mac OS X Security
Through Gray Box Fuzzing Technique

Stefano Bianchi Mazzone Mattia Pagnozzi Aristide Fattori
ste@security.di.unimi.it mattia@security.di.unimi.it aristide@security.di.unimi.it
Dipartimento di Informatica Dipartimento di Informatica Dipartimento di Informatica

Università degli Studi di Milano Università degli Studi di Milano Università degli Studi di Milano

Alessandro Reina Andrea Lanzi Danilo Bruschi
reina@security.di.unimi.it andrew@security.di.unimi.it bruschi@di.unimi.it

Dipartimento di Informatica Dipartimento di Informatica Dipartimento di Informatica
Università degli Studi di Milano Università degli Studi di Milano Università degli Studi di Milano

ABSTRACT
The kernel is the core of any operating system, and its se-
curity is of vital importance. A vulnerability, in any of
its parts, compromises the whole system security model.
Unprivileged users that find such vulnerabilities can easily
crash the attacked system, or obtain administration privi-
leges. In this paper we propose LynxFuzzer, a framework to
test kernel extensions, i.e., the dynamically loadable com-
ponents of Mac OS X kernel. To overcome the challenges
posed by interacting with kernel-level software, LynxFuzzer
includes a bare-metal hardware-assisted hypervisor, that al-
lows to seamlessly inspect the state of a running kernel and
its components. We implemented and evaluated LynxFuzzer
on Mac OS X Mountain Lion and we obtained unexpected
results: we indivuated 6 bugs in 17 kernel extensions we
tested, thus proving the usefulness and effectiveness of our
framework.

Categories and Subject Descriptors
D.4 [Operating Systems]: Reliability – Verification – Se-
curity and Protection

1. INTRODUCTION
Kernel security is of vital importance for a system. A vul-

nerability, in any of its parts, may compromise the security
model of the whole system. Unprivileged users that find
such vulnerabilities can easily crash the attacked system, or
obtain administration privileges. Unfortunately, kernels are
an evermore attractive target for attackers, and the number
of kernel vulnerabilities is rising at an alarming rate [18].
Looking for vulnerabilities in kernel-level code is a daunt-
ing task, because of its many intricacies. Indeed, modern
kernels are extremely complex and have many subsystems,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EuroSec ’14 April 14–17, 2014, Amsterdam, Netherlands
Copyright 2014 ACM 978-1-4503-2715-2/14/04 ...$15.00.
http://dx.doi.org/10.1145/2592791.2592793 ...$15.00.

possibly developed by third parties. Often, such compo-
nents are not as secure as the kernel, because of the lack
of testing, and their typical closed-source nature [1, 2, 19,
3]. Furthermore, kernels have countless entry points for user
data. System calls, file systems, and network connections,
among others, allow user-fed data to reach important code
paths in the kernel. If a bug is found in such paths, it can
lead to vulnerabilities that compromise the entire system
security. Testing the user-to-kernel interface is really im-
portant because it can reveal a potential privilege escalation
vulnerability that represents one of the main targets attack
nowadays [20]. Windows and Linux user-to-kernel interfaces
have been deeply analyzed and many tools exist for their
testing and verification. On Mac OS X, the user-to-kernel
communication approach used by kernel extensions [5] is rel-
atively young and has not been extensively analyzed before.
Furthermore, the number of OS X adoptions is growing at
a continuously rising pace and this will soon attract the at-
tention from cyber-criminals.

In this paper, we present the design and implementation
of LynxFuzzer, a framework to automatically find vulnerabil-
ities in kernel extensions (kexts), i.e., dynamically loadable
components of the Mac OS X kernel. Kexts are built ad-
hering to the IOKit framework [5], the official toolkit for
creating OS X kernel extensions (also used in the iOS envi-
ronment). LynxFuzzer uses a gray box fuzzing approach and
adopts dynamic test-case generation. This means that it au-
tomatically extracts information from the target extensions
and uses them to dynamically adapt its input generation
techniques. More precisely, we implemented three different
fuzzing engines inside LynxFuzzer: a simple generation en-
gine that produces pseudo-random inputs that only respect
kext-defined constraints, a mutation engine that builds input
data from previously sniffed valid inputs, and an evolution-
based engine that leverages evolutionary algorithms [6] and
uses code coverage level as a main validating feature.

We decided to build LynxFuzzer hypervisor component
on top of the open source hardware-assisted virtualization
framework HyperDbg [13] mainly because of the many dif-
ficulties of running Mac OS X inside commonly available
virtualization software. In fact Apple is well-known for its
custom hardware (e.g., the Magic Mouse), which is not often
emulated by common hypervisors. This shortcoming would
prevent LynxFuzzer from testing some of the drivers in OS

X. Moreover an hardware-assisted environment assures the
possibility of gathering dynamic information about the state
of the machine during the crash of the system. In summary
our work contributes the following:

• We design LynxFuzzer, a framework that is able to
automatically find vulnerabilities in kernel extensions
(kexts), i.e., dynamically loadable components of the
Mac OS X kernel. We have tackled serveral implemen-
tation challenges to make an efficient fuzzing system.

• We devise a set of efficient and trasparent techniques
to automatically extract the fuzzing input constraints
that allow the system to reduce the inputs searching
space and to efficiently fuzz the Mac OS X user-to-
kernel communication interface.

• We developed a prototype of the fuzzying system, and
performed an experimental evaluation on serveral kext
extensions. Our experiments show that the system is
able to individuate 6 bugs in 17 kexts we analyzed.
Two of these bugs have already been patched in OS X
10.9 (Maverick) and have been assigned the following
CVE-ID by Apple: CVE-2013-5166 and CVE-2013-
5192.

2. IOKIT FUNDAMENTALS
In this section we will give an overview of the IOKit frame-

work, as this is basic for the understanding of LynxFuzzer.
Mac OS X is an operating system developed by Apple and

currently adopted on Apple computers. Among its many
components, the Kernel contains one that is particularly rel-
evant for our work: the IOKit. IOKit is a “a collection of
system frameworks, libraries, tools, and other resources for
creating device drivers in OS X” [5]. It offers an object ori-
ented environment and a number of abstractions that make
the (commonly painful) task of writing kernel components
much easier and “user space friendly”. The IOKit frame-
work contains many abstractions and components, and we
describe those relevant to our work in the following of this
section.

const IOExternalMethodDispatch
UserClient :: sMethods[kNumberOfMethods] = {
{
/* kMyScalarIStructIMethod */
(IOExternalMethodAction) &UserClient :: sScalarIStructI ,
/* One scalar input value */
1,
/* The size of the input struct */
sizeof(MySampleStruct),
/* No scalar output values */
0,
/* No struct output value */
0

},
/* ... */
}

Figure 1: A sample dispatch table.

A fundamental component of every OS is the communica-
tion between user- and kernel-space components. Windows
and Linux offer such functionality through system calls and
special virtual files (e.g., /dev/urandom). IOKit supports
both techniques, but also adds a novel and much more com-
plex mechanism, named DeviceInterface [17, 5].

To leverage this mechanism, Kernel extensions [21] (i.e.
drivers) define a set of methods that can be invoked by user-
space programs. Such methods have limitations in terms

User
Process

User
Process User

ProcessUser
Process

User mode

Kernel mode

User
Client

User
Client

DT #1 DT #2

Kext

Figure 2: Invoking a kext’s method.

of number and type of data that can be received by and
returned to the caller. The list of these methods and con-
straints on their parameters are stored into a structure of ut-
most importance (both for IOKit and for our fuzzing frame-
work): the dispatch table. Each kext can define one or more
dispatch table. Each table is an array of structures, each
one containing a function pointer, allowed input and output
values, as well as the number and size of the values that can
be accepted (or that are returned) by the method. If the
size of an input structure is not known a priori, the check
can be demanded to the receiving method, by specifying a
size of 0xffffffff in the table. It is possible to have, for
any driver, more than one dispatch table. IOKit, indeed, al-
lows kexts to offer multiple interfaces to user-space programs
at the same time. Each kext must also define one custom
subclass of UserClient for each interface. Instances of these
subclasses are then loaded in the kernel memory along with
the kext (Figure 2). Every UserClient object contains the
dispatch table corresponding to the interface it offers.

User-space programs can invoke kexts methods via IoCon-

nectCallMethod(), if the methods are specified in one of the
kext dispatch tables. To be able to do so, however, the pro-
gram must first find the specific instance it wants to talk to.
To illustrate how this happens, we must first introduce one
more IOKit abstraction, the IOService. Each IOKit device
driver is an object that inherits from the IOService class
and a kext may contain different IOService objects at the
same time. Let us consider an example. There are typically
many USB devices connected to a computer and each one
needs its own driver. Such drivers are all contained in the
IOUSBFamily kext, and each of them is a specific IOService
subclass (service, for short) for a device. When a user-space
process wants to communicate with one device, as we men-
tioned above, it establishes a mach connection [17] to IOKit
and searches for the specific service associated to the device.
This process is called Device Matching [5].

Once the communication channel is established and the
service is found, the user-space program uses IoConnect-

CallMethod() to invoke the desired method. This transfers
the control to the IOKit framework that, before actually ex-
ecuting the target method, performs a set of operations. At
first, it retrieves the dispatch table entry from the UserClient
object. The entry is then passed to the externalMethod()

function along with other parameters that allow to perform
the actual invocation of the kext method. This, however,
happens only if the parameters correspond to what is speci-
fied by the dispatch table entry, otherwise the invocation is
blocked.

The whole IOKit input control mechanism offers an addi-
tional protection layer, with respect to common mechanisms
such as ioctl, because checks are performed before param-
eters are even moved from user- to kernel-space. Obviously,
all these constraints make the fuzzing process quite complex.
It is almost useless to just fuzz functions of a kext with com-
pletely random parameter sizes, as most invocations would
be discarded by checks performed by IOKit. As we will see
in the next section, one of the key aspects of our fuzzer is its
ability automatically extract constraints on parameters from
the target and dynamically adapt its fuzzing techniques to
get better efficiency.

3. LYNXFUZZER
The purpose of our fuzzer is to trigger bugs in kext code

that can be reached by user-space programs, by means of
the IOKit framework. A bug triggerable by user-space, in-
deed, may allow un-privileged users to crash the system,
or even obtain arbitrary kernel-level code execution, which
typically leads to privilege escalation attacks [20]. Further-
more, we decided to focus our efforts on the DeviceInterface
boundary-crossing mechanism, since it became the de facto
user-to-kernel communication standard for OS X kernel ex-
tensions.

As it should be clear from what we described in section 2,
there are many constraints that must be considered when
invoking a kext method and such constraints are specific to
each kext. Knowing constraints contained in the dispatch
table allows us to reduce the possible fuzzing space to what
is actually accepted by the kext, thus gaining much more ef-
ficiency. Thus, we designed LynxFuzzer so that it can extract
these information in a completely automatic fashion and fuzz
them autonomously. Furthermore, the automation of our
fuzzing infrastructure is not limited to this. Indeed, we are
able to extract valid input vectors used in non-artificial in-
teractions between user- and kernel-level components. Such
inputs are used as a basis to elaborate new inputs aimed at
improving the fuzzing strategy.

An overview of LynxFuzzer architecture is depicted in Fig-
ure 3. Our framework has two main components: one that
resides in user-space and consists of 4 sub-components, and
one built on top of our hypervisor analysis framework. Fig-
ure 3 also reports the main interactions between LynxFuzzer
internal components. The tracer interacts with the hyper-
visor to identify where the dispatch tables of the target are
(1, 2). Once discovered, the hypervisor retrieves them from
the kernel memory and sends them back to the tracer that
stores them into the data manager for later use (2, 3). The
sniffer uses such information to intercept non-artificial Io-
ConnectCall() invocations and gather a set of valid inputs
(4, 5). Finally, the fuzzer components starts invoking the
target methods with custom parameters (6), waiting for an
eventual panic (7). Depending on the selected fuzzing en-
gine, the fuzzer may use valid inputs precedently stored in
the data manager to generate new inputs or leverage cover-
age information (8).

3.1 Tracer
The tracer is the first component of LynxFuzzer to be ex-

ecuted, as its task is finding out what to fuzz, i.e., it must
identify which of the target methods can be invoked. This
information is contained into the dispatch tables of the tar-
get kext. Being able to locate the dispatch table of a kext,

however, is not easy, since IOKit uses a number of abstrac-
tion layers to hide such information to user-space programs.
We devised a solution by observing that, whenever a user-
space program invokes IoConnectCallMethod(), the IOKit
will invoke its externalMethod() function. Thus, we pro-
ceed as follows. LynxFuzzer hypervisor sets a breakpoint on
the externalMethod() function and intercepts whenever it
is executed. Once the trap is set, the tracer issues a request
to the target kext with a selector value of 0. When the
hypervisor intercepts the resulting externalMethod() exe-
cution, it extracts the base of the dispatch table, uses it to
dump the whole table, and eventually returns it to the tracer
component. Finally, the tracer stores the extracted dispatch
table into the data manager, so that other components can
leverage this information for their operations.

Note that the size of the dispatch table is not known a
priori, nor is contained in the parameters of the trapped
function. To solve this problem, LynxFuzzer leverages the
structured nature of such tables to infer how many entries
it has and dump it. Indeed, each table entry is formed by:
a function pointer, which must reside in the memory area
of the target, and 4 consecutive integers, two of which must
fall in the [0:16) range.

3.2 Sniffer
Beside the checks performed by IOKit, the kext itself

could implement constraints on input values. Thus, Lynx-
Fuzzer includes a sniffer component, that is able to intercept
real executions (i.e., not artificially triggered by our frame-
work) of the target methods and to extract their parameters.
To do so, we once again leverage LynxFuzzer hypervisor com-
ponent that is able to transparently and seamlessly intercept
whenever an interesting function is executed, and dump its
parameters, by inspecting the target kext memory.

In particular, the hypervisor places a transparent break-
point on the externalMethod() function, whose parameters
contain enough information to retrieve valid inputs. Indeed,
the hypervisor uses the dispatch argument to discriminate
which kext is the target of the intercepted invocation and
selector to understand the method being called. Valid in-
puts are extracted from IOExternalMethodArguments struc-
ture containing the actual parameters that will be passed to
the callee. Such data structure contains fields that allow to
precisely infer the number and size of input parameters that
will be stored into the data manager.

3.3 Fuzzer

Target

GE

ME

EE

Monitor
Request

Generator

Figure 4: Fuzzer sub-components.

The fuzzer is the main component of LynxFuzzer. After
the tracer and the sniffer obtained all the ancillary informa-
tion needed to properly fuzz one (or more) kext, the fuzzer

Tracer FuzzerSniffer

Data Manager

Target

Hypervisor

Non-root mode

Root mode

User mode

Kernel mode

5.Valid Inputs

3.Dispatch Tables

7.Panic Inputs/Statistics

4
.S

y
st
e
m

R
eq

u
e
st
s

2
.D

is
p
a
tc
h

T
a
b
le

E
n
tr
ie
s 1.IoConnectCall

Inspect/Intercept

8
.C

o
v
e
ra

g
e
In

fo
.

6.IoConnectCall

Figure 3: Architecture of LynxFuzzer and interactions between its components (gray areas).

creates test cases (i.e., set of inputs) for the kext methods
and invoke them through the IOKit device interface. Fig-
ure 4 reports the inner architecture of the component, that
has three main parts: a request generator, a set of fuzzing
engines and a monitor.

The request generator is an extremely versatile compo-
nent: it must operate independently from the target kext
and the selected fuzzing engine. In a typical execution, it
receives a test case from the engine, checks that it respects
what is specified in the dispatch table entry of the target
method and properly crafts the argument for an IoConnect-

CallMethod() that eventually executes the target method in
the kext.

If the test case does not cause a crash, the kext sends back
an answer that is received by the monitor. Depending on
the received answer and on the engine currently in use, the
monitor may decide to alter the engine so that the next test
case will depend on the result of the previous one. As we
will see later in this section, both the mutation engine and
the evolution engine leverage this information.
LynxFuzzer, furthermore, implements the concept of session-

based fuzzing: we do not save just the request that triggers
the bug, but we record every request that we make from the
beginning of the fuzzing session. This practice is common
when fuzzing stateful network protocols [8], but is also use-
ful in our scenario. There are indeed kexts that maintain
a “state” that is changed by a number of different fuzzing
requests until an invalid state is reached and a bug is trig-
gered. For this reason, recording communication sessions,
instead of single requests, greatly improves the reproducibil-
ity of a bug. To record communication sessions between the
fuzzer and a target kext, every request is stored in the data
manager. Finally, the fuzzing engine is responsible for the
production of input values (or input vectors) that will be
used by the request generator. Details of the three different
engines that we implemented in LynxFuzzer are described in
the following sections.

3.3.1 Generation Engine (GE)
This is the simplest and quickest engine of the three. Its

generation process may be summed up as follows. At first,
it builds data structures that can contain the input for the

target method. Then, it generates pseudo-random inputs
and fill the structure that are then sent to the target, in-
voking the method through IoConnectCallMethod(). If the
system does not crash, then the procedure begins anew.

3.3.2 Mutation Engine (ME)
This second fuzzing approach follows a principle that is

the opposite of the previous one: every new input is gener-
ated from valid inputs collected by the sniffer component.
The fuzzing process is roughly made of the following steps.
Valid inputs that were previously gathered by the sniffer are
mutated with different functions. Then, request containing
such forged inputs are sent to the target method. If the
system does not crash, the monitor checks the response of
the kext, possibly excluding values that caused the kext to
return an error from next mutations. This greatly increases
the efficiency of the fuzzer, in the case of inputs structures
with a variable size, because it gradually eliminates those
that are not accepted because of checks performed in the
code of the target method. The set of mutation functions
used by this engine includes: bit flipping, byte flipping, byte
swapping and size change.

3.3.3 Evolution Engine (EE)
The evolution engine tries to overcome the limitations of

the previous ones. In an effort to reduce the use of pseudo-
randomness, it leverages concepts of evolutionary algorithms
to generate new inputs.

The hearth of any evolutionary algorithm is the fitness
function, that depicts the fittest elements that will con-
tribute to build new generations. In LynxFuzzer, we devised
two different fitness functions: one that measures the code
coverage of an input vector and one that measures the dis-
tance of an input from an ideal target vector (input that
crashes the system). In the first case, we strive to create a
set of input vectors that can give us the best code-coverage
rate possible. The second, on the other hand, is useful when
we want to individuate inputs similar to a given one (e.g., a
vector that is known to trigger a bug in the target).

Code coverage analysis. Our code coverage analysis meth-
od works as follows. Before starting to invoke kext methods,

Kext
Code Coverage Perc.

Methods Estimation Full

IOUSBFamily 64.8% 61.1% 33.7%
IOHIDFamily 86.4% 69.9% 11.4%
SimpleDriver 96.6% 77.3% 34.3%
IOSurface 76.6% 58.8% 18.5%
AppleUSBHub 86.9% 54.5% 37.5%

Table 1: Coverage analysis results.

the fuzzer component communicates to the hypervisor (via
hypercall) the range of code pages of the kext. The hypervi-
sor removes the EXEC permission from the EPT entries cor-
responding to received memory ranges. As soon as the kext
tries to execute code in such pages, it triggers an EPT vio-
lation and the hypervisor keeps track of the instruction that
caused it. To proceed, it restores EXEC permission on the
faulting page and configures the guest to perform a single-
step. When the hypervisor gets the control back, because
of the resulting debug exception, it removes the permission,
so that the next instruction will violate again. Once the
fuzzed methods returns, the fuzzer sends another hypercall
to disable the tracing. The hypervisor stores collected in-
formation into a buffer in the fuzzer address space so that
it can be used by the user-space component to calculate the
code coverage corresponding to the invocation.

4. EXPERIMENTAL EVALUATION
This section presents the result of the experiment we con-

ducted to evaluate the effectiveness of LynxFuzzer. To this
purpose, we used the fuzzer to exercise a set of 17 differ-
ent Kernel Extensions and we found 6 bugs in them1. More
detailedly, 2 of the 6 have already been patched in OS X
10.9 (Maverick) and have been assigned the following CVE-
ID by Apple: CVE-2013-5166 and CVE-2013-5192 [4]. The
remaining 4 are still unpatched and will be most likely ad-
dressed in the next releases of OS X.

All the experiments were conducted on a Mac OS X 10.8.2
system (Mountain Lion), installed on Apple hardware (In-
tel i5 CPU and 12GB of RAM). Thanks to the adoption
of kernel-security measures in OS X, none of the bugs we
identified can be easily exploited to perform a privilege es-
calation attack.

A metric that is usually associated with efficiency of a
fuzzer, is the code coverage level. However, as also stated
in [14], such metric may not be extremely significant: a
fuzzer could even reach 100% code coverage of the analyzed
code, but yet fail at finding a bug. Since it is customary to
report such information, however, we conducted an experi-
ment to calculate the code coverage level of LynxFuzzer.

Even if our hypervisor component can easily keep track
of every instruction that is executed in a given time-frame
(e.g., during the fuzzing), giving a precise measure of the
coverage of a kext is quite challenging. To give an estima-
tion of the amount of code that can be reached from methods
exported in the dispatch table we use, once again, a hybrid
static-dynamic technique. First, we statically count the in-
structions of the exported methods and individuate all the
control transfer instructions (CTI). Then, for each CTI, if

1Obviously, all the bugs were reported to Apple or the ap-
propriate vendor.

Kext
No. of Rps w/o Rps w/ Over-

Inst. Tracing Tracing head

AppleSMCLMU 1890 668.28 385.90 1.73x
AppleMikeyDriver 17457 517.54 283.28 1.83x
AppleHDAController 12294 591.82 273.77 2.16x
IOHDAFamily 3376 634.17 278.41 2.28x
AppleSMC 5608 651.99 284.31 2.29x
IOSurface 8866 434.84 112.44 3.87x
AppleHDA 101532 635.39 164.20 3.87x
IOUSBFamily 49920 204.89 42.76 4.79x
SimpleDriver 2261 424.91 74.01 5.74x
IOHIDFamily 63915 278.00 46.44 5.99x

Overall — — 3.45x

Table 2: Overhead of the code coverage analysis.

the target is another method of the same kext, we add its
instructions to the overall count.

Unfortunately, this is not enough because, due to their
object-oriented nature, kexts include a high number of in-
direct CTIs, that cannot be followed statically. For such in-
structions, we revert to dynamic analysis: we modified Lynx-
Fuzzer code coverage analysis module so that it dumps the
target of every indirect CTI executed in the kext code. If the
target corresponds to a method of the kext that had not been
deemed reachable by the static analysis, then we update the
instructions count with the newly discovered method.

Table 1 reports the code coverage results of a subset of the
fuzzed kexts. Under the “Coverage” column we report three
different code coverage percentages, respectively calculated
over: the number of instructions of exported methods, the
static/dynamic estimation we just described and, finally, the
overall number of instructions contained in the kext.

We also evaluated the overhead introduced by our code
coverage method that we described in Section 3.3. To mea-
sure it, we run the generation engine on each method of 10
different kexts, with and without the code coverage analysis
enabled, and measured the consequent decrease in terms of
requests per second the kext was able to serve. For the sake
of precision, measurements were repeated 10 times for each
module and results were averaged. The average overhead is
3.45x, with a best and worst case of, respectively, 1.73x and
5.99x. Detailed results of this evaluation are reported in Ta-
ble 2. As we can see, we pay a high price for obtaining full
precision without modifying the target, yet this is a much
lower overhead if compared with other techniques [22].

Finally, during our experiments we also measured the ef-
ficacy of each input generator engines to discover bugs. In
particular we show that all the engines utilized were able to
discover the bugs with some difference in terms of perfor-
mance. In particular the Evolution Engine with the code
coverage-based fitness function was faster than the other
two, while the Generation Engine was the slowest one.

5. RELATED WORK
The closest work to LynxFuzzer is found in an online pre-

sentation by Xiaobo and Hao [10] that briefly analyzes the
possibility of fuzzing OS X kernel extensions through Devi-
ceInterface. Unfortunately, a deep comparison between such
work and LynxFuzzer is hindered by the lack of details of the
former. The depicted approach appears to be largely manual
and there is neither an analysis of performances nor results
of conducted fuzzing activities to compare.

Another similar, yet extremely more specific, approach is

presented by Keil and Kolbitsch [15] who propose a stateful
fuzzer for 802.11 device drivers. Beside its usage of stateful
fuzzing, LynxFuzzer is quite different from this work, since it
addresses generic kernel extensions and leverages hardware-
assisted virtualization instead of emulation.

SLAM is a model checking engine whose goal is to au-
tomatically verify if a program correctly uses external li-
braries [7, 12]. On top of such engine, Microsoft created
Static Driver Verifier, a tool to automatically analyze the
source code of Windows device drivers and determine whether
they correctly interact with the Windows kernel. SLAM has
many limitations, if compared to LynxFuzzer. First, it re-
quires the source code of the drivers it analyzes. Second, its
scope is limited to the correctness of interactions with known
libraries. Finally, users of SLAM must feed it with manu-
ally created rules that the tool will check for the verification,
thus requiring some manual effort.

S2E [11] is a binary analysis framework that implements
the idea of selective symbolic execution, a method to mini-
mize the amount of code that needs to be executed symboli-
cally. Even if remarkably useful, for example we could use it
to simbolically execute every hardware-interacting part of a
kext, S2E has some drawbacks. First, the runtime overhead
of 6x for concrete execution and 78x for symbolic execution
is extremely high. Second, it is strongly binded to QEMU
and, as we stated before, running Mac OS X inside an em-
ulator is not trivial.

Dowser is probably the most advanced approach to fuz-
zing targeted at finding buffer overflows [14]. It uses a mix of
static program analysis, concolic execution, and taint track-
ing to automatically steer the execution of a program to in-
teresting locations, more likely to contain a buffer overflow.
In particular, the observation behind Dowser is that there
are particular sets of instructions that are more error-prone
than others (e.g., pointer arithmetic). Dowser is extremely
powerful, and LynxFuzzer could benefit by adopting a sim-
ilar approach to its fuzzing activities. Unfortunately, our
approach is aimed at testing closed source software, while
Dowser relies on the source code of the target to locate in-
teresting instructions.

Finally EXE [9] and SmartFuzzer [16] are similar to Lynx-
Fuzzer, as they both use a combination of static and dynamic
analysis to automatically generate inputs vector that can ef-
ficiently exercise user-space applications.

6. CONCLUSION
LynxFuzzer is a fuzzing framework for Mac OS X kernel

extensions. LynxFuzzer leverages hardware-assisted virtual-
ization and three different input-generation engines to dis-
cover bugs that could lead unprivileged users to crash the
machine or to attempt privilege-escalation attacks. We im-
plement a prototype and we show in our experiments the
efficiency and efficacy of our system. LynxFuzzer was able
to discover bugs in 6 of them in 17 kernel extensions of Mac
OS X Mountain Lion.

7. REFERENCES
[1] CVE-2010-1794, 2010. http://web.nvd.nist.gov/

view/vuln/detail?vulnId=CVE-2010-1794.

[2] CVE-2013-0109, 2013. http://web.nvd.nist.gov/
view/vuln/detail?vulnId=CVE-2013-0109.

[3] CVE-2013-0981, 2013. http://web.nvd.nist.gov/
view/vuln/detail?vulnId=CVE-2013-0981.

[4] Apple. About the security content of OS X Mavericks
v10.9, Oct. 2013.
http://support.apple.com/kb/HT6011.

[5] Apple Inc. I/O Kit Fundamentals.
https://developer.apple.com.

[6] D. Ashlock. Evolutionary computation for modeling
and optimization. Springer Science+ Business Media,
2006.

[7] T. Ball, B. Cook, V. Levin, and S. K. Rajamani.
SLAM and static driver verifier: Technology transfer
of formal methods inside Microsoft. In Integrated
formal methods, pages 1–20. Springer, 2004.

[8] G. Banks, M. Cova, V. Felmetsger, K. Almeroth,
R. Kemmerer, and G. Vigna. Snooze: toward a
stateful network protocol fuzzer. In Information
Security, pages 343–358. Springer, 2006.

[9] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and
D. R. Engler. EXE: Automatically generating inputs
of death. In Proceedings of the 13th ACM Conference
on Computer and Communications Security, 2006.

[10] X. H. Chen Xiaobo. Find Your Own iOS Kernel Bug,
2012.

[11] V. Chipounov, V. Kuznetsov, and G. Candea. S2e: A
platform for in-vivo multi-path analysis of software
systems. In Proceedings of the 16th International
Conference on Architectural Support for Programming
Languages and Operating Systems, Newport Beach,
California, USA, 2011.

[12] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
checking. MIT press, 1999.

[13] A. Fattori, R. Paleari, L. Martignoni, and M. Monga.
Dynamic and transparent analysis of commodity
production systems. In Proceedings of the 25th

International Conference on Automated Software
Engineering (ASE), September 2010.

[14] I. Haller, A. Slowinska, M. Neugschwandtner, and
H. Bos. Dowsing for overflows: A guided fuzzer to find
buffer boundary violations. In Proceedings of 22nd

USENIX Security Symposium, Washington, DC, USA,
2013.

[15] S. Keil and C. Kolbitsch. Stateful fuzzing of wireless
device drivers in an emulated environment. Black Hat
Japan, 2007.

[16] A. Lanzi, L. Martignoni, M. Monga, and R. Paleari. A
smart fuzzer for x86 executables. In Proceedings of the
3rd International Workshop on Software Engineering
for Secure Systems, 2007.

[17] J. Levin. Mac OS X and IOS Internals: To the
Apple’s Core. Wrox, 2012.

[18] NIST. CVE and CCE statistics.
http://web.nvd.nist.gov/view/vuln/statistics.

[19] NIST. CVE-2013-0976, 2013. http://web.nvd.nist.
gov/view/vuln/detail?vulnId=CVE-2013-0976.

[20] E. Perla and M. Oldani. A guide to kernel
exploitation: attacking the core. Syngress, 2010.

[21] A. Singh. Mac OS X Internals: A Systems Approach.
Addison-Wesley Professional, 2006.

[22] M. L. Soffa, K. R. Walcott, and J. Mars. Exploiting
hardware advances for software testing and debugging.
In Proceedings of the 33rd International Conference on
Software Engineering, 2011.

