
http://www.sektioneins.de

Antid0te 2.0 - ASLR in iOS
Stefan Esser <stefan.esser@sektioneins.de>

http://www.sektioneins.de
http://www.sektioneins.de
http://www.sektioneins.de
mailto:stefan.esser@sektioneins.de
mailto:stefan.esser@sektioneins.de

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

Who am I?

Stefan Esser

• from Cologne / Germany

• in information security since 1998

• PHP core developer since 2001

• Month of PHP Bugs and Suhosin

• recently focused on iPhone security (ASLR, jailbreak)

• Head of R&D at SektionEins GmbH

2

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

Part I

Introduction

3

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

iPhone Security in 2010

• iPhone security got strucked twice

• first during PWN2OWN (SMS database stolen with ROP payload)

• again by jailbreakme.com (full remote jailbreak)

• lack of ASLR in iOS recognized as major weakness

• in december Antid0te demonstrated an ASLR solution for jailbroken iPhones

4

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

iPhone Security in 2011

• Apple released their own ASLR implementation with iOS 4.3

• several iOS updates to solve remotely exploitable flaws in MobileSafari

• another iOS update to solve the location gate problem

• but no updates to fix local kernel vulnerability used for current jailbreaks

• more security researchers concentrate on iOS kernel vulnerabilities

5

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

Topics

• What were the challenges in adding ASLR to the iPhone

• How did Antid0te‘s ASLR work around them without the help of Apple

• How does Apple‘s own ASLR implementation work

• How combining both implementation is even more secure

• What are the limitations of ASLR on the iPhone

6

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

Part II

ASLR vs. iOS

7

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

ASLR vs. iOS

• iOS 4.2.x had no randomization at all (libs, dyld, stack, heap, ...)

• ASLR hard to implement due to Apple‘s optimizations (dyld_shared_cache)

• Codesigning major roadblock for adding effective ASLR

• binaries don‘t have relocation information

8

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

Libraries where are thou?

• since iPhoneOS / iOS 3.x shared libraries disappeared from the device

• because loading libraries is considered costly (time / memory)

• Apple moved all libraries into dyld_shared_cache

• technique also used in Snow Leopard

9

 $ ls -la /Volumes/Jasper8C148.N90OS/usr/lib/
 total 336
 drwxr-xr-x 6 sesser staff 476 17 Nov 09:56 .
 drwxr-xr-x 7 sesser staff 238 17 Nov 08:46 ..
 drwxr-xr-x 5 sesser staff 170 17 Nov 09:06 dic
 -rwxr-xr-x 1 sesser staff 232704 22 Okt 06:15 dyld
 drwxr-xr-x 2 sesser staff 102 22 Okt 05:49 info
 lrwxr-xr-x 1 sesser staff 59 17 Nov 09:56 libIOKit.A.dylib -> /System/Library/Frameworks/IOKit...work/Versions/A/IOKit
 lrwxr-xr-x 1 sesser staff 16 17 Nov 09:56 libIOKit.dylib -> libIOKit.A.dylib
 lrwxr-xr-x 1 sesser staff 16 17 Nov 09:06 libMatch.dylib -> libMatch.1.dylib
 lrwxr-xr-x 1 sesser staff 18 17 Nov 09:52 libcharset.1.0.0.dylib -> libcharset.1.dylib
 lrwxr-xr-x 1 sesser staff 15 17 Nov 09:52 libedit.dylib -> libedit.3.dylib
 lrwxr-xr-x 1 sesser staff 16 17 Nov 09:53 libexslt.dylib -> libexslt.0.dylib
 lrwxr-xr-x 1 sesser staff 18 17 Nov 09:23 libsandbox.dylib -> libsandbox.1.dylib
 drwxr-xr-x 2 sesser staff 68 22 Okt 06:10 libxslt-plugins
 drwxr-xr-x 2 sesser staff 68 22 Okt 05:47 system

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

dyld_shared_cache in iOS <= 4.2.x

10

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

dyld_shared_cache Header in iOS <= 4.2.x

11

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

dyld_shared_cache in detail

12

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

dyld_shared_cache vs. ASLR

• libraries in cache are loaded at a fixed base address

• moving or shuffling requires to know fixup addresses

• no relocation information in binaries

• segment splitting - code and data compiled to specific delta

• moving or shuffling libraries requires to adjust delta

• positions of deltas unknown and also not in usual reloc info

13

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

Part III

Antid0te 1.0 - How did it work?

14

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

Antid0te

• Antid0te‘s goals were

• to add ASLR to jailbroken iPhones

• to not destroy the optimizations performed by Apple

• Codesigning not a problem because it is disabled on jailbroken phones

• Lack of relocation information major problem

15

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

Okay what did we do ?

looking at different shared caches
revealed the following

➡ they seem to be made on the
same machine

➡ the same binaries are used
during construction

➡ library base addresses differ
due to random load order

16

 /usr/lib/libSystem.B.dylib /usr/lib/libSystem.B.dylib /usr/lib/libSystem.B.dylib /usr/lib/libSystem.B.dylib

iPhone 4 iPod 4 iPad

inode 0x0933DE37 0x0933DE37 0x0933DE37

mtime 0x4CC1050A 0x4CC1050A 0x4CC1050A

base 0x33B5C000 0x31092000 0x30D03000

 /usr/lib/libobjc.dylib /usr/lib/libobjc.dylib /usr/lib/libobjc.dylib /usr/lib/libobjc.dylib

iPhone 4 iPod 4 iPad

inode 0x093AF2FC 0x093AF2FC 0x093AF2FC

mtime 0x4CC10998 0x4CC10998 0x4CC10998

base 0x33476000 0x33A03000 0x34A7D000

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

How does this help us ?

• same binaries but different load address allows diffing

• in theory memory should only differ in places that require relocation

• simply diffing two caches should get us all rebasing positions

➡ in reality it is not that simple => many complications

17

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

Obvious Complications

• different CPU type

• ARMv6 => iPod 2G, iPhone 3G

• ARMv7 => iPod 3G, iPod 4G, iPhone 3GS, iPhone 4, iPad

• iPod / iPhone / iPad have different features

• libraries exist in one cache but not in the other

• nothing to diff against ?

18

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

What to compare against each other ?

• diff against different CPU type => failed

• diff against beta version => failed

• diff against previous release => often fails

➡ the 4.2, 4.2b, 4.2.1, 4.2.1a debacle ensured enough partners

➡ the rushed release of 4.3 / 4.3.1 / 4.3.2 helps again

➡ 4.3.3 for iPad is problematic

• merging diffs => works for some devices

➡ merge diff between iPhone 3GS and iPhone 4G
and diff between iPhone 4G and iPod 4G

19

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

Let‘s start diffing

• Python implementation

• uses macholib

• understands the dyld_shared_cache format

• diffs mach-o files

• ensures same section (name, size, ...)

• diffs section by section

• diff is performed 4 byte aligned

• ignores __LINKEDIT

• differences printed to stdout

20

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

Results of first diffing attempts

• found different types of differences

➡ 2 large unknown values

➡ 2 pointers inside the relocated binary

➡ 2 pointers outside the relocated binary

➡ 2 small unknown values

➡ 1 small value vs. 1 pointer

➡ 1 pointer vs. 1 small value

21

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

Analysing the results (I)

• Expected results

• 2 pointers inside same binary => normal rebasing

• 2 pointers outside binary => imports

• Unexpected results

• 2 large values

• 2 small values

• 1 pointer vs. 1 small value

22

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

Analysing the results (II)

more careful evaluation revealed even worse fact

➡ when 2 pointers are found they do not always point to the same symbol

➡ luckily this only occurs inside some __objc_* sections

➡ thought -> must be some ObjC weirdness

23

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

What are the two large unknown values ?

• very common in __text section

• first believed to be a code difference

• using IDA to look at it revealed it is caused by different __DATA - __TEXT delta

24

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

Large unknown values in libobjc.dylib

• inside libobjc.dylib there is a huge blob of unknown large values that differs

• had no idea what this was - made me fear a roadstop

• source code access or reversing libobjc.dylib required => see later

25

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

Small Values and Pointers

• some files contain small values that
do not match

• sometimes there is a small value in
one file and a pointer in the other

• occurs only in __objc_* sections

• emphasizes the need of objc
reversing

26

 055/321 /.../DataAccess.framework/DataAccess

 __text

 ...
 __objc_imageinfo

 __objc_const
 small value + ptr 0000000f 337d1611
 small value + ptr 00000012 32bcc832
 ptr + small value 30b12832 0000000f
 ptr + small value 30af14cd 0000000d

 __objc_selrefs

 __objc_classrefs

 __objc_superrefs

 __objc_data

 __data
 global 10836
 address 5917
 delta 4916
 sel 0

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

Reversing the objc differences

• grabbed objc-4 source code from http://developer.apple.com/

• tried to find the responsible code

• soon turned out to be more complicated

• source code matches only partially

27

http://developer.apple.com
http://developer.apple.com

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

iPhone libobjc does not match the source (I)

28

struct objc_selopt_t {

 uint32_t version; /* this is version 3: external cstrings */
 uint32_t capacity;
 uint32_t occupied;
 uint32_t shift;
 uint32_t mask;
 uint32_t zero;
 uint64_t salt;
 uint64_t base;

 uint32_t scramble[256];
 /* tab[mask+1] */
 uint8_t tab[0];
 /* offsets from &version
 to cstrings
 int32_t offsets[capacity];
 */
}

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

iPhone libobjc does not match the source (I)

• unknown large blob is the offset table

• which is a list of offsets to selector names

• knowing the content it is easy to relocate

• on the iPhone the offset table is followed by an unknown table

• unknown table has capacity many entries of size 1 byte

• according to twitter it is a one byte checksum of the selector name

29

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

Analysing the different pointer problem

looking at it with IDA reveales that method tables are simply resorted

30

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

Analysing the small values

• reason for differences in small values was not discovered until dyld_shared_cache
was relocated and applications did not work

• objc applications could not find selectors

• problem was finally found with reverse engineering

• lower 2 bits of size field used as a flag

• method list sorted by selectors => allows faster lookup

31

typedef struct method_t {
 SEL name;
 const char *types;
 IMP imp;
} method_t;

typedef struct method_list_t {
 uint32_t entsize_NEVER_USE; // low 2 bits used for fixup markers
 uint32_t count;
 struct method_t first;
} method_list_t;

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

What needs to be rebased?

• images must be shifted around

• image pointers in dyld_shared_cache header

• Mach-O-Headers

• segment addresses / segment file offsets

• section addresses / section file offsets

• LC_ROUTINES

• symbols

• export trie

• section content according to collected differences

• __objc_opt_ro selector table in libobjc.dylib

32

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

Part IV

Apple‘s ASLR in iOS 4.3.x

33

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

How did ASLR end up in iOS?

• about three month into 2011 ASLR was discovered in the iOS 4.3 beta

• reason why it was introduced is unknown

• some believe it was introduced because Antid0te forced their hand

• but it is more likely that ASLR in Windows Phone 7 triggered it

• we will never know ...

34

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

Randomization in iOS 4.3

• jailbreakers with access to beta versions of iOS 4.3 posted crash dumps

• crash dumps revealed that

• main binary load address is randomized

• dyld load address is randomized

• main binary and dyld are shifted by same offset (at execution time)

• dyld_shared_cache load address is randomized (at boot time)

35

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

Randomization of Main Binary

• Applications are now compiled as
position independent executables

• sets MH_PIE flag in mach-o
header and adds relocation
information

• no TEXT relocations therefore no
problem with codesigning

• old applications cannot be
randomized

➡ no magic, just using the features
of mach-o that were already there

36

 TestiPAD:~ root# ./test
 Address Tester
 Stack: 0x2fea0be0
 Code: 0xa3e55
 malloc_small: 0x1c8e7e00
 malloc_large: 0xc1000
 printf: 0x36735dd1
 _dyld_get_image_header(0): 0xa2000

 TestiPAD:~ root# ./test
 Address Tester
 Stack: 0x2fecbbe0
 Code: 0xcee55
 malloc_small: 0x1f861200
 malloc_large: 0xec000
 printf: 0x36735dd1
 _dyld_get_image_header(0): 0xcd000

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

Randomization of Dyld

• dyld was already a PIE without TEXT relocs in older iOS versions

• even Antid0te could randomize it

• now randomization is done by the kernel on load

• however dyld is only slided the same amount as the main binary

• if main binary is not a PIE dyld is also not moved

37

 Num Basename Type Address Reason | | Source
 | | | | | | | |
 1 test - 0x75000 exec Y Y /private/var/root/test at 0x75000 (offset 0x74000)
 2 dyld - 0x2fe74000 dyld Y Y /usr/lib/dyld at 0x2fe74000 (offset 0x74000) with ...

 Num Basename Type Address Reason | | Source
 | | | | | | | |
 1 test - 0xc8000 exec Y Y /private/var/root/test at 0xc8000 (offset 0xc7000)
 2 dyld - 0x2fec7000 dyld Y Y /usr/lib/dyld at 0x2fec7000 (offset 0xc7000) with ...

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

How Random is the Baseaddress?

• randomized on page boundary

• only 256 possible base addresses between 0x1000 and 0x100000

38

0

250

500

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

Randomization of dyld_shared_cache

• Sliding the dyld_shared_cache seems straight forward

• but Apple‘s implementation is complex and involves

• randomization in dyld

• a changed dyld_shared_cache file format

• an undocumented relocation information format

• a new syscall

• a change in the memory page handling

39

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

dyld_shared_cache sliding in dyld

• dyld has always been responsible for mapping the shared cache

• now it simply has to load it at a random address

• and tell the kernel about it (via new syscall)

• due to dyld_shared_cache structure only about 4200 different base addresses

40

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

New Syscall - vm_shared_region_slide

• iOS 4.3.x comes with a new syscall 437

• strings indicate that name is something
like vm_shared_region_slide

• loads the dyld_shared_cache relocation
information into kernel memory

• five parameters to this syscall

1. slide delta

2. address of region to slide

3. size of region to slide

4. address of reloc information

5. size of reloc information

41

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

Changes in Memory Page Handling

• sliding whole cache is too slow

• Apple changed page handler to
relocate each page on access

• works on the kernel buffer filled
by syscall 437

• made decrypting the new
dyld_shared_cache file format easy

42

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

dyld_shared_cache Header in iOS 4.3.x

43

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

dyld_shared_cache relocation information

• relocation information is stored per page

• storage format 128 byte bitmap = 1024 bit

• each bit represents 4 aligned bytes

• if bit is set then add slide

44

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

Part V

Antid0te 2.0 ???

45

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

Antid0te 2.0 ???

• did iOS 4.3.x make Antid0te useless?

• no, because iPhone 3G only runs up to 4.2.1

• no, because iPhone 4 (CDMA) only runs 4.2.7 (feasibility not tested)

• no, because Antid0te can extend the ASLR of iOS 4.3.x

46

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

What is different with iOS 4.3.x? (I)

• with iOS 4.3.x binaries come with relocation entries

• allows to select device specific base addresses for

• main binary

• dyld

• stack can still be randomized on the fly

• possible extensions

• slide main binary and dyld separately

• on the fly randomization with better randomness

47

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

What is different with iOS 4.3.x? (II)

• dyld_shared_cache comes also with relocation entries

• helps to partly verify the fixups detected by Antid0te

• but Antid0te still needs to detect relocations by diffing

• no relocation entries for „delta“ access

• objective c selector table needs to be detected and resorted

• relocation bitmap table entries need to be sorted

48

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

What is different with iOS 4.3.x? (III)

• kernel level changes make replacing the cache harder

• old on-the-fly method using DYLD environment variables just crashes

• for now tethered jailbreak with modified kernel is required

• crash problem might be solvable with patches to syscall 437 and dyld

➡ work in progress

49

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

Part VI

How Secure is ASLR on the iPhone

50

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

Why is the iPhone more Secure with ASLR

• targets are not
respawning daemons

• attacks usually against
non-respawning clients

• best target MobileSafari

• exploits are one shot

• not getting it right = crash

51

 Hardware Model: iPad1,1
 Process: MobileSafari [302]
 Path: /Applications/MobileSafari.app/MobileSafari
 Identifier: MobileSafari
 Version: ??? (???)
 Code Type: ARM (Native)
 Parent Process: launchd [1]

 Date/Time: 2011-05-19 01:03:18.012 +0200
 OS Version: iPhone OS 4.3.3 (8J3)
 Report Version: 104

 Exception Type: EXC_BAD_ACCESS (SIGSEGV)
 Exception Codes: KERN_INVALID_ADDRESS at 0x55555554
 Crashed Thread: 0

 Thread 0 name: Dispatch queue: com.apple.main-thread
 Thread 0 Crashed:
 0 ??? 	 0x55555554 0 + 1431655764
 1 WebCore 	 0x32584d10 0x32519000 + 441616
 2 WebCore 	 0x32584c0c 0x32519000 + 441356
 3 WebCore 	 0x32584b08 0x32519000 + 441096
 4 WebCore 	 0x32582364 0x32519000 + 430948
 5 WebCore 	 0x3258499e 0x32519000 + 440734

 ...

 Thread 0 crashed with ARM Thread State:
 r0: 0x2fedfed4 r1: 0x00000000 r2: 0x00000098 r3: 0x00000020
 r4: 0x0129bf54 r5: 0x55555555 r6: 0x2fedfed4 r7: 0x2fedfeb8
 r8: 0x00000001 r9: 0x01299000 r10: 0x55555555 r11: 0x2fee02a8
 ip: 0x32acc908 sp: 0x2fedec18 lr: 0x32584d15 pc: 0x55555554
 cpsr: 0x600f0030

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

Theoretical Limitations of ASLR on iPhone

• main binary, dynamic libs, dyld, heap and stack share 29bit address room

• 0x00000000 - 0x2FFFFFFF

• single randomized page could be in 229 - 212 = 217 = 131072 places

• address space for dyld_shared_cache is only 27bit wide

• 0x30000000 - 0x37FFFFFF __TEXT

• 0x38000000 - 0x3FFFFFFF __DATA

• single page can only be in 227 - 212 = 215 = 32786 places

• ASLR implementations offer less randomization

52

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

Limitations of iOS 4.3.x ASLR (main binary/dyld)

• main binary and dyld slided same amount

• knowing address in one reveals addresses in the other

• only 256 possible base addresses

• stack always next to dyld base address

• if code segment is > 1 mb then page at 0x100000 is always readable

53

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

Limitations of iOS 4.3.x ASLR (dyld_shared_cache)

• whole dyld_shared_cache is slided as one block

• more than 100 mb of code can only be slided by 17 mb (about 4200 tries)

• large memory area is guaranteed to be readable

• order of libraries not randomized

• knowing the address of one symbol enough to know them all

54

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

Limitations of Antid0te (main binary/dyld)

• only possible on jailbroken device

• standard base of main binary / dyld can be changed

• same limitations as iOS 4.3.x ASLR

• but base addresses different for every device

55

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

Limitations of Antid0te (dyld_shared_cache)

• does only work on jailbroken device (tethered for iOS 4.3.x)

• generating new caches only possible if comparison partners exists

• same sliding limitations as iOS 4.3.x but libraries are randomly shuffled

• extension could create unreadable memory gaps

• knowing the address of one symbol reveals addresses in same library

56

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

Final Words

• Antid0te 1.0 works perfect for iOS 4.2.1

• Antid0te 2.0 still work in progress for iOS 4.3.x

• expected release of Antid0te 2.0 in June *finally*

• more security tools for jailbroken iPhones soon (around BlackHat USA)

57

Stefan Esser • Antid0te 2.0 - ASLR in iOS • May 2011 •

Questions ???

58

THE ELEVATOR

because the JailBreak
community demanded to

see it in action...

