N\
SektionEins

http://www.sektioneins.de

10S 6

Exploitation

280

Days Later

Stefan Esser <stefan.esser@sektioneins.de>

CAN

SEC
WEST

mailto:stefan.esser@sektioneins.de
mailto:stefan.esser@sektioneins.de
http://www.sektioneins.de
http://www.sektioneins.de

Who am 1?

Stefan Esser

from Cologne / Germany
in information security since 1998
initially did a lot of low level security

from 2001 to 2010 focused on PHP / web app security

since mid-2010 focused on iPhone security (ASLR, kernel exploitation)

Head of Research and Development at SektionEins GmbH

Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 e

What is this talk about?

iOS 6 is the new major version of iOS with tons of new security features

new kernel security mitigations already discussed by Mark Dowd/Tarjei Mandt
but iIOS 6.x has other not yet mentioned new security features

and some kernel features require commentary

basically an update to my CSW 2012 talk

280 days later because it was about 280 days later when | submitted to Dragos

N\
Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 3 <) SektionEins

Part |

iOS Security Timeline 2012-2013

Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 e

CanSecWest 2012 - iOS 5 An Exploitation Nightmare?

March 2012

reasons why iOS 5 jailbreak took so long
history of some iOS security features
history of iOS security bugfixes

getting kernel debugger running
on new devices

abusing BPF as kernel weird machine

URL: http://cansecwest.com/cswl?2/
CSW2012 StefanEsser 1055 An Exploitation Nightmare FINAL.pdf

N\
Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 5 <) SektionEins

http://cansecwest.com/csw12/CSW2012_StefanEsser_iOS5_An_Exploitation_Nightmare_FINAL.pdf
http://cansecwest.com/csw12/CSW2012_StefanEsser_iOS5_An_Exploitation_Nightmare_FINAL.pdf
http://cansecwest.com/csw12/CSW2012_StefanEsser_iOS5_An_Exploitation_Nightmare_FINAL.pdf
http://cansecwest.com/csw12/CSW2012_StefanEsser_iOS5_An_Exploitation_Nightmare_FINAL.pdf
http://livepage.apple.com/
http://livepage.apple.com/

I0OS Hacker’'s Handbook

April 2012

10
Charlie Miller - Dionysius Blazakis - Dino Dai Zovi HaCker’S

Stefan Esser - Vincenzo lozzo - Ralf-Philipp Weinmann Handbook

covers iOS 4 to iOS 5

iOS Security Basics, iOS in the Enterprise
Encryption, Code Signing and Memory Protection
Sandboxing, Fuzzing iOS Applications
Exploitation, Return-Oriented-Programming

Kernel-Debugging and Exploitation, Jailbreaking, Baseband Attacks

URL: http://ca.wileyv.com/WileyCDA/WileyTitle/
productCd-1118204123.html

N\
Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 6 <) SektionEins

http://ca.wiley.com/WileyCDA/WileyTitle/productCd-1118204123.html
http://ca.wiley.com/WileyCDA/WileyTitle/productCd-1118204123.html
http://ca.wiley.com/WileyCDA/WileyTitle/productCd-1118204123.html
http://ca.wiley.com/WileyCDA/WileyTitle/productCd-1118204123.html

SyScan 2012 - iOS Kernel Heap Armageddon

~

April 2012 | SektionEins

http//www.sektioneins.de

iff iOS k | h
different iOS kernel heap wrappers iOS Kernel Heap Armageddon

Stefan Esser <stefan.esser@sektioneins.de>

feasibility of cross zone / memory manager
attacks

attacking IOKit application data / object
vtables instead of heap meta data

using OSUnserializeXML() for generic
kernel level heap feng shui

talk updated for BlackHat USA & XCon 2012

URL 1: htto://reverse.put.as/wp-content/uploads/2011/06/
SyScanz2012 Stefanksser 10S Kernel Heap Armageddon.pdf

URL 2: http://media.blackhat.com/bh-us-12/Briefings/Esser/
BH US 12 Esser 10S Kernel Heap Armageddon WP.pdf

N\
Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 7 ‘) SektionEins

http://reverse.put.as/wp-content/uploads/2011/06/SyScan2012_StefanEsser_iOS_Kernel_Heap_Armageddon.pdf
http://reverse.put.as/wp-content/uploads/2011/06/SyScan2012_StefanEsser_iOS_Kernel_Heap_Armageddon.pdf
http://reverse.put.as/wp-content/uploads/2011/06/SyScan2012_StefanEsser_iOS_Kernel_Heap_Armageddon.pdf
http://reverse.put.as/wp-content/uploads/2011/06/SyScan2012_StefanEsser_iOS_Kernel_Heap_Armageddon.pdf
http://media.blackhat.com/bh-us-12/Briefings/Esser/BH_US_12_Esser_iOS_Kernel_Heap_Armageddon_WP.pdf
http://media.blackhat.com/bh-us-12/Briefings/Esser/BH_US_12_Esser_iOS_Kernel_Heap_Armageddon_WP.pdf
http://media.blackhat.com/bh-us-12/Briefings/Esser/BH_US_12_Esser_iOS_Kernel_Heap_Armageddon_WP.pdf
http://media.blackhat.com/bh-us-12/Briefings/Esser/BH_US_12_Esser_iOS_Kernel_Heap_Armageddon_WP.pdf

FinFisher Mobile - The Smartphone Who Loved Me

August 2012

The SmartPhone Who Loved Me: FinFisher
Goes Mobile?

August 29, 2012

Stackberry Blogger Arrests
by CitizenLab e Chqucﬁntsorsh.

This post describes our work analyzing soveral sa os which ar fo obile vanants of the
R . s
Jyber 1 C ber
Sp ur\t
Survelllance Disrib

analysis of FinFisher for mobile devices

. w. . Egypt
Frcodon“ of

Exprossnon C)JJ\
Hag - n

Samples Caught in the Wild 300 j:u:;o; ':.11-.»;;-\; o analysis, and highiighiing links 1o FinFizhor's parors * Indls waa ”1
iIOS sample compiled for developer phones

media wrongly assumed developer cert lets
you write spy applications

URL: https://citizenlab.org/2012/08/the-smartphone-who-loved-me-
finfisher-goes-mobile/

N\
Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 8 <) SektionEins

https://citizenlab.org/2012/08/the-smartphone-who-loved-me-finfisher-goes-mobile/
https://citizenlab.org/2012/08/the-smartphone-who-loved-me-finfisher-goes-mobile/
https://citizenlab.org/2012/08/the-smartphone-who-loved-me-finfisher-goes-mobile/
https://citizenlab.org/2012/08/the-smartphone-who-loved-me-finfisher-goes-mobile/

FinSpy Moile: iOS and Apple UDID Leak

-

)
. CROWDSTRIKE

September 2012

-

Emergency
Response

FINSPY MOBILE: IOS AND APPLE UDID
LEAK

Last week, Morgan Marquis-Boire and Bill Marczak from The Citizen Lab published a
fascinating glance at real-world mobile espionage tool created by Gamma

by Alex RadoceaACrOsttrike International under its ‘FinFisher’' product line. The report covers the mobile

component of FinFisher dubbed FinSpy Mobile’ which supports iOS, Android,
Windows, Blackberry, and Symbian phones. Gamma International in response to the
article, issued a press release stating that FinFisher's “information was stolen from its

deep analysis of FinFisher for iOS

revealed that there was no iOS priv escape
0-day in FinFisher iOS - just empty placeholder

instead seems to heavily rely on being jailbroken
with a public jailbreak prior to installation

CORPORATE

INTELLIGENCE

Il TECHNICAL

URL: http://www.crowdstrike.com/blog/finspy-mobile-ios—-and-apple-

udid-leak/index.html

Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 9

\
<) SektionEins

http://www.crowdstrike.com/blog/finspy-mobile-ios-and-apple-udid-leak/index.html
http://www.crowdstrike.com/blog/finspy-mobile-ios-and-apple-udid-leak/index.html
http://www.crowdstrike.com/blog/finspy-mobile-ios-and-apple-udid-leak/index.html
http://www.crowdstrike.com/blog/finspy-mobile-ios-and-apple-udid-leak/index.html

iOS 6 Released and J/”F"ailbroken on Day 1

September 2012

by Musclenerd
iOS 6 on pre-AS already tethered jailbroken on day one

Notes Reminders Clock Stocks

by CHPWN

iOS 6 on iPhone 5 already failbroken on day one

failbroken means Cydia runs but no kernel payload

URL: https://twitter.com/chpwn/status/249249908094296064

N\
Stefan Esser ¢ iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 10 ‘) SektionEins

https://twitter.com/chpwn/status/249249908094296064
https://twitter.com/chpwn/status/249249908094296064

HITB2012 - iOS 6 Kernel Security

October 2012

IOS 6 Kernel Security:

by Mark Dowd and Tarjei Mandt A Hacker’s Guide

deep analysis of new iOS 6 kernel by Mark Dowd and Tarjei Mandt
exploit mitigations tm@azimuthsecurity.com

contained a 0-day kernel info leak vulnerability

and the vm_map_copy exploitation technique
heavily used by latest iOS 6 jailbreak

URL: http://conference.hackinthebox.org/hitbsecconf2012kul/
materials/D1IT2%20-%20Mark%20Dowd%20&%20Tar7ei%$20Mandt%$20-
$20108S6%20Security.pdf

Video: http://www.voutube.com/watch?v=0-WZinFoki4

N\
Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 11 {) SektionEins

http://conference.hackinthebox.org/hitbsecconf2012kul/materials/D1T2%20-%20Mark%20Dowd%20&%20Tarjei%20Mandt%20-%20iOS6%20Security.pdf
http://conference.hackinthebox.org/hitbsecconf2012kul/materials/D1T2%20-%20Mark%20Dowd%20&%20Tarjei%20Mandt%20-%20iOS6%20Security.pdf
http://conference.hackinthebox.org/hitbsecconf2012kul/materials/D1T2%20-%20Mark%20Dowd%20&%20Tarjei%20Mandt%20-%20iOS6%20Security.pdf
http://conference.hackinthebox.org/hitbsecconf2012kul/materials/D1T2%20-%20Mark%20Dowd%20&%20Tarjei%20Mandt%20-%20iOS6%20Security.pdf
http://conference.hackinthebox.org/hitbsecconf2012kul/materials/D1T2%20-%20Mark%20Dowd%20&%20Tarjei%20Mandt%20-%20iOS6%20Security.pdf
http://conference.hackinthebox.org/hitbsecconf2012kul/materials/D1T2%20-%20Mark%20Dowd%20&%20Tarjei%20Mandt%20-%20iOS6%20Security.pdf
http://www.youtube.com/watch?v=O-WZinEoki4
http://www.youtube.com/watch?v=O-WZinEoki4

POC2012 - Find your own iOS kernel bug

November 2012

Find Your Own iOS
Kemel Bug

Chen Xiaobo
&

analysis of previous |OKit vulnerability Xu Hao

by Xu Hao and Chen Xiaobo

about fuzzing iOKit for vulnerabilities

later repeated at SyScan360 in December

URL: http://syscan.orqg/index.php/download/get/
328bf4b37e6ae8b799472££230465339/
XuHao_Chen Xiaobo Find your own 1i0S_kernel bug.zip

Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 12

http://syscan.org/index.php/download/get/328bf4b37e6ae8b799472ff230465339/XuHao_Chen_Xiaobo_Find_your_own_iOS_kernel_bug.zip
http://syscan.org/index.php/download/get/328bf4b37e6ae8b799472ff230465339/XuHao_Chen_Xiaobo_Find_your_own_iOS_kernel_bug.zip
http://syscan.org/index.php/download/get/328bf4b37e6ae8b799472ff230465339/XuHao_Chen_Xiaobo_Find_your_own_iOS_kernel_bug.zip
http://syscan.org/index.php/download/get/328bf4b37e6ae8b799472ff230465339/XuHao_Chen_Xiaobo_Find_your_own_iOS_kernel_bug.zip
http://syscan.org/index.php/download/get/328bf4b37e6ae8b799472ff230465339/XuHao_Chen_Xiaobo_Find_your_own_iOS_kernel_bug.zip
http://syscan.org/index.php/download/get/328bf4b37e6ae8b799472ff230465339/XuHao_Chen_Xiaobo_Find_your_own_iOS_kernel_bug.zip

Hackulo.us / Installous shutdown

December 2012

announcement that Hackulo.us shut down

also took down Installous the notorious
application used by iOS application pirates
on jailbroken iPhones

celebrated by media, jailbreak developers
and iOS app developers around the world

URL: http://thanks-god—-not—anymo.re

k& Twitter B News

by dissident January 3, 2011

Thank you for using Installous 4 from
Hackulo.us! We're very proud of this
monumental update to Installous
which includes vastly improved
graphics, MobileHunt, fixed bugs and
the homescreen that you're viewing
right now! Hopefully, these new
features will allow us to communicate
better with our users and accept

.:_;‘_;' Business

‘ @ Education

D Entertainment

N\
Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 13 <) SektionEins

http://thanks-god-not-anymore.com
http://thanks-god-not-anymore.com

kuaiyong, Zeusmos, 25pp, ...

-

January 2013 - LA Kuaiyong

after installous is dead more and more iOS
piracy solutions that do not require jailbreak

solutions reportedly based on account
sharing and/or some undisclosed exploit

still active ?1?

URL 1: htto://m.csoonline.com/article/725183/now—-pirated-ios-
apps—can—-be—-installed-without—-Jailbreak

URL 2: http://no.yvou.dont.get.the.url.vyou.want Research Assistant: Marc Rogers

N\
Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 14 ‘) SektionEins

http://m.csoonline.com/article/725183/now-pirated-ios-apps-can-be-installed-without-jailbreak
http://m.csoonline.com/article/725183/now-pirated-ios-apps-can-be-installed-without-jailbreak
http://m.csoonline.com/article/725183/now-pirated-ios-apps-can-be-installed-without-jailbreak
http://m.csoonline.com/article/725183/now-pirated-ios-apps-can-be-installed-without-jailbreak
http://no.you.dont.get.the.url.you
http://no.you.dont.get.the.url.you

Community Milking and iOS 6 JB Release

- -

February 2013 'Eevadsrs evasion - iOS 6.0-6.1.2 Jailbreak

by evad3rs

website with donation button and
multiple banner ads

told people repeatedly for about a week
to check website for status updates

about one week later release of iOS 6.0/6.1 jailbreak

so far the most expensive jailbreak in terms of crowdfunding

URL: http://www.evasiOn.com/

N\
Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 15 <) SektionEins

http://www.evasi0n.com/
http://www.evasi0n.com/

evasiOn Jailbreak’s Userland Components

February 2013

by Braden Thomas”AccuvantLabs

analysis of userland components of
evasiOn jailbreak

covers most of the userland bugs
exploited by evasiOn

Contact LABS
e

LABS Services

RSS Feed

ACCUVANTLABS

RawTech

Posted by £ T on 02.04.2013

W Tweet

iOS 6.1 evasiOn jailbreak

The latest jailbreak is out, and it's time to dissect it and document all the exploits and techniques it
ccccc ins. These days, jailbreaks are so well tested that it's easy for people to forget all the complexity

that goes into them. There are numerous e

ASLR, and code signature requirements that ke jaibreak:

One important point to make is that unlike the previous jailbreak com exploits, which could be use;

against an unwitting victim, jailbreak

st an unwitti
usually only useful to the phone’s owner. Attackers are less interested because iPhones with a
code set wi

asscode set will refuse to communica

URL: http://blog.accuvantlabs.com/blog/bthomas/evasiOn-

Jallbreaks—-userland—-component

Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 16

\
<) SektionEins

http://blog.accuvantlabs.com/blog/bthomas/evasi0n-jailbreaks-userland-component
http://blog.accuvantlabs.com/blog/bthomas/evasi0n-jailbreaks-userland-component
http://blog.accuvantlabs.com/blog/bthomas/evasi0n-jailbreaks-userland-component
http://blog.accuvantlabs.com/blog/bthomas/evasi0n-jailbreaks-userland-component

Dissecting the “evasiOn” Kernel Exploit

Feb r uar y 2 0 1 3 n@ azimuth services training resources about

project zeus

The ev Or break leverages an impressive set of vulnerabilities
that collectively erablo users to fully jailbreak their iOS 6.x basod
dcm While the user land component was an
, the kernel exploit used to evade sandbox restn"tnor's as chI as

ode signing, holds an equally impressive array of sophisticated
exploitation technigues. In this blog entry, we detail the leveraged kernel
Current Posts vulnerability and show how evasiOn goes to great lengths to overcome
April 2010 security hardenings such as kernel address space randomization and
kernel address space protection.

Archives

by Tarjei Mandt”*Azimuth —

February 2013

The IOUSBDeviceFamily Vulnerability

The kernel vulnerability leveraged by evasiOn lies in the
com.apple.iokit.|OUSBDeviceFamily driver in iOS. An application may

ana Iys is of kernel com ponents of oI oot oot egooss and commanicalo wih a USB device 35 a whok. Th 5~
typically assisted by leveraging functionality of the IOUSBDeviceLib
evasiOn jailbreak

Posts

shows how evasiOn is based on techniques discussed
in the iOS 6 kernel security talk by azimuth

URL: http://blog.azimuthsecurity.com/2013/02/from-usr—-to—-svc-—
dissecting-evasiOn.html

N\
Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 17 <) SektionEins

http://blog.azimuthsecurity.com/2013/02/from-usr-to-svc-dissecting-evasi0n.html
http://blog.azimuthsecurity.com/2013/02/from-usr-to-svc-dissecting-evasi0n.html
http://blog.azimuthsecurity.com/2013/02/from-usr-to-svc-dissecting-evasi0n.html
http://blog.azimuthsecurity.com/2013/02/from-usr-to-svc-dissecting-evasi0n.html

Part Il

iOS 6 Kernel Security “Improvements”

Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 18

IOS 6 introduces KASLR - kernel address space layout randomization

only 256 possible load addresses

each 2 MB apart

starting at 0x81200000 ending at 0xA1000000

Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 19

KASLR: But why 2 MB Aligned?

2 MB alignment of KASLR seems arbitrary
why not smaller alignment?
big alignment is less secure

right now:

® |eak any address in __DATA and you know the
kernel’s base address

(address - 0x200000) & OxFFEO0000

leak any address from first 2 MB of kernel __ TEXT
and know the kernel’s base address

address & OxFFEOO000

N\
Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 20 <) SektionEins

Kernel Address Space Hardening

e kernel _ TEXT no longer writable

= to stop kernel code hotpatching

® kernel heap no longer executable

= to stop just executing kernel data

® kernel address space is separated from user space processes

m to stop return into user space code
and offset from NULL-deref attacks

Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 21

Kernel Stack Cookies

saved_pc

saved_register

saved_register

stack cookie

local variables

stack_cookie_ptr

iIOS 6 added stack cookies to protect from kernel stack

buffer overtlows
implementation is rather unusual

® stack cookie on top of stack

® bottom of local stack contains ptr to the value it is

compared against

second byte of stack cookie is forced to 0x00

Kernel __DATA
__Stack _chk_guard

Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 22

\
<) SektionEins

Kernel Stack Cookie Verification

stack cookie veritication in function epilog
verification against cookie pointed to
fact that stack cookie ptr and stack cookie are both on stack is a weakness

wrong cookie value will lead to a kernel panic without message

~

:8027AFBO RO, [SP,#0x4C+stack_cookie ptr)
:8027AFB2 RO, [RO]

:8027AFB4 R1, [SP,#0x4C+stack_cookie)
:8027AFB6 RO, R1

:8027AFBS

:8027AFBA SP, SP, #0x34

:8027AFBC {R8,R10,R11}

:8027AFCO {R4&-R7 ,PC}

:8027AFC2 ___stack_chk_fail

N\
Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 23 <) SektionEins

Kernel Heap Cookies

IOS 4 and iOS 5 kernel heap exploitation has always attacked the free list
in iOS 6 Apple introduced heap protection cookies to protect free list
distinguishes between small poisoned and larger non-poisoned blocks

two different security cookies are used for this

m stops attacks against the free list as used before in public jailbreaks

Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 24

Kernel Heap Cookies (larger blocks)

e for larger blocks the memory content is kept but end is trashed with cookie
® secret cookie has lowest bit cleared

e f data of freed block leaks this leaks

® akernel heap address: 0x87b46500

® the secret cookie: 0x6b7769¢c8 ~ 0x87b46500 = 0xECC30CCS8

next_pointer

87b46480: 00 65 b4 87 00 00 00 00 00 00
87b46490: 00 00 00 00 00 00 00 00 00 00
87b464a0: 00 00 00 00 00 00 00 00 00 00
87b464b0: 00 00 00 00 00 00 00 00 00 00
87b464c0: 00 00 00 00 00 00 00 00 00 00
87b464d0: 00 00 00 00 00 00 00 00 00 00
87b464e0: 00 00 00 00 00 00 00 00 00 00
87b464f0: 00 00 00 00 00 00 00 c8 69 77

next_pointer*non_poisoned_cookie

N\
Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 25 <) SektionEins

Kernel Heap Cookies (small blocks)

e for small blocks the memory content is overwritten with 0xdeadbeef

® secret cookie has lowest bit set

e if data of freed block leaks this leaks

® akernel heap address: 0x92£1c740

® the secret cookie: 0x7ecl1l387b ~ 0x92f1c740 = OxEC30FF3B

next_pointer

92f1c700: 40 c7 fl 92 ef be ad de ef be ad de ef be ad de @
92f1c710: ef be ad de ef be ad de ef be ad de ef be ad de
92f1c720: ef be ad de ef be ad de ef be ad de ef be ad de
92f1c730: ef be ad de ef be ad de ef be ad de 7b 38 cl 7e

next_pointer*poisoned_cookie

Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 26

Kernel Heap Cookies after allocation

® on allocation free list pointer and cookie are overwritten with 0Oxdeadbeef

® most probably as defense in depth against information leaks

9072b000:
9072b010:
9072b020:
9072b030:
9072b040:
9072b050:
9072b060:
9072b070:

N\
Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 27 <) SektionEins

Kernel Heap Hardening

previously mach_zone_info() and host_zone_info() leaked internal state

both functions now require debugging kernel boot arguments

previously OSUnserializeXML() allowed fine control over kernel heap
Apple fixed some bugs in it and put some arbitrary limits on it
only exact methods described at BlackHat / SyScan were killed

other ways to abuse this function for kernel heap feng shui still working

Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 28

Death to Kernel Info Leaks

e two fold strategy to fight kernel info leaks

® fix information leak vulnerabilities

® obfuscate kernel addresses returned to user land

® ecxample of fixed information leaks
® BPF stack data info leak
® kern.proc leak fixed

e kern.file info leak fixed

Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 29

Kernel Address Obfuscation

® |ots of kernel APl return kernel addresses to user land processes

e.g. mach port kobject(), mach port space info(), vm region recurse(),
vm _map region recurse(), vm map page info(), proc info(), fstat(), sysctl()

® protected by adding a random 32 bit cookie (lowest bit set)

-

#define VM_KERNEL_ADDRPERM(_v)
({({(vm_offset_t)(_v) == 0) ?
(vm_offset_t)(0) : \
(vm_offset_t)(_v) + vm_kernel_addrperm)

iin->iin_urefs = IE_BITS_UREFS(bits);

iin->iin_object = (natural_t)VM_KERNEL_ADDRPERM((uintptr_t)entry->ie_object);
iin->1iin_next entry->ie_next;

iin->1iin_hash entry->ie_index;

N\
Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 30 <) SektionEins

Kernel Image Address Obfuscation

e some APl might even return addresses inside the kernel image

® these addresses are additionally unslid to protect against KASLR leaks

- #define VM_KERNEL_UNSLIDE(_v)
((VM_KERNEL_IS_SLID(_v) ||
VM_KERNEL_IS_KEXT(_v)) ?
(vm_offset_t)(_v) - vm_kernel_slide :
(vm_offset_t)(_v))
#define VM_KERNEL_SLIDE(u)
({vm_offset_t)(_u) + vm_kernel_slide)

#define VM_KERNEL_ADDRPERM(_v)
(((vm_offset_t){(_v) == 0) ?
(vm_offset_t)(0) : \
(vm_offset_t)(_v) + vm_kernel_addrperm)

if (@ '= kaddr && is_ipc_kobject(xtypep))

*addrp = VM_KERNEL_ADDRPERM(VM_KERNEL_UNSLIDE(kaddr));
else

*addrp = 0;

N\
Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 31 <) SektionEins

Readonly Syscall Table

previous jailbreaks used partial syscall table overwrites
Apple moved syscall table into section _ DATA:: const
section is made read only at runtime

controlled by kernel boot argument dataconstro

stops syscall table corruption ...

N\
Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 32 <) SektionEins

Just replace Syscall Table completely?

® kernel linking changes in iOS 6 introduced lots of indirect accesses
® syscall table is no longer accessed directly (also true for lots of other stuff)
® instead pointer to syscall table is used from _ nl symbol ptr section

® and guess what - this section is writable

8021F760 R10, [RO,#0x30]

8021F764 R10, #0

8021F768 R10, [RO]

8021F76C R2, #(pNsys - 0x8021F77C) ; _pNsys
8021F774 R2, [PC,R2] ; _pNsys

8021F778 R1l, #(pSysent - 0xB8021F78C) ; _pSysent
8021F780 R5, R10

8021F784 R1l, [PC,R1l] : _pSysent

8021F788 R2, [R2)

8021F78C R5, R2

8021F790 loc_8021F7A0

3

N

-
v NN
d (0O (

:_A.l__;)jl.JJQTI—_:T

nl symbol ptr
nl symbol ptr:80
nl symbol ptr

Ao e & § \J

-

DCD nsys

—

NN RN
1 ™9

DCD _sysent

N\
Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 33 <) SektionEins

Part Il

iIOS 6 Misc Hardening

Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 34

BPF not so weird anymore...

at CSW 2012 BPF was mentioned as weird machine inside the kernel
in iOS 6.x it is still a machine but not so weird anymore
Apple added sanity checks inside the function

access to slack memory is now checked for bounds

Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 35

mobile_house_arrest - Readonly Code Directory

lockdown service for reading / writing into app directories
since iOS 6 application’s code directory is no longer writable

previously it was possible to replace arbitrary application resources

-

' Explorer ket s
< = ‘ oo 28 |mi © L .Search Folder
View

Back Mode Quick Look Action Search

[) iPhonessms {J iExplorer > [iPhonesA: , [} Apps > [l Vancouver 3D Mag

Name File Type
Media =
ﬁj » [_IDocuments

v oA Apps » [Library

l:l CityMaps2Go » [_]Vancouver 3D Map.app
iTunesArtwork
(] Google Maps iTunesMetadata.plist

(] Navigator » Etmp
("] vancouver 3D Map

%) Backups

2 Photos

Vancouver 3D Map

4 iCloud
Child Directories: 4
(0 Books Child Files: 2

» JJ Media Library Last Modified: 02.03.2013 2...
Location: /
» Y& Bookmarks

-Aq Browse iTunes Backups

Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 36

Part IV

User Space ASLR (Address Space Layout Randomization)

Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 37

ASLR in i0S 4.3-6.x

® randomly slides
® main binary

e dyld (dynamic linker)

® dynamic library cache

N\
Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 38 <) SektionEins

Position Independent Executables in 2012

all system binaries were
compiled as PIE

most 3rd party apps were
not compiled as PIE

VR — ——————
source code of old idapiescan.py is available at Github

https://github.com/stefanesser/idapiescan

Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 39

https://github.com/stefanesser/idapiescan
https://github.com/stefanesser/idapiescan

iOS 4.3-6.x: NO PIE main binary randomization

® dynamic loader is not slid in iOS 4 for NO PIE main executables
® since iOS 5 the dynamic loader is always slid

® randomized by kernel in 256 positions

oxoooooooo 10OS 4.3 - 4.3.x - NO PIE main executable

main dyld

0X2FFFFFFF

oxoooooooo 1OS 5.0 - 6.x - NO PIE main executable

main 20 dyld

O0x2FFFFFFF

Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 * 40

Position Independent Executables in 2013

all system binaries are
compiled as PIE

most 3rd party apps are
now compiled as PIE

NO_PIE mostly
unimportant apps

some high profile
exceptions are: Skype,
SkyDrive,

Google Translate, ...

Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 41 SektionEins

iOS 4.3-6.0: PIE main binary randomization

e for PIE main executables the main binary and dyld are randomized
® main binary and dyld are slid the same amount

® randomized by kernel in 256 positions

0x00000000 iI0S 4.3 - 6.0 - PIE main executable

20 i 20 dyld

O0x2FFFFFFF

Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 42

iOS 6.1: PIE main binary randomization

® since iOS 6.1 the kernel finally generates two separate slides
® randomness of both is still limited to 256 positions

® knowing addresses in dyld / main no longer leaks address of other

0x00000000 iI0S 4.3 - 6.0 - PIE main executable

20 i 20 dyld

0x2FFFFFFF

0x00000000 iI0S 6.1 - PIE main executable

73 ' 32 dyld

0X2FFFFFFF

Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 43

iI0S 4.3-5.1.1: dyld_shared_cache randomization

data and code must slide together (due to codesigning)
hole after code - data usually loaded to Ox3EO00000

max slide determined by difference of end of shared area and end of data

around 4200 different positions

0x30000000 iI0S 4.3 -5.1.1 - no slide

' CODE | l DATA | |

0X3FFFFFFF

0x30000000 i0S 4.3 -5.1.1 - maximum slide

‘ ‘ CODE l ‘ DATA |

0X3FFFFFFF

Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 44

iIOS 6.x: dyld_shared_cache randomization

code and data loaded right next to each other
no more hole - no more wasted space

max slide determined by size of shared area minus size of shared cache

about 21500 different positions for iPod 4G
(new devices = more code = less random)

0x30000000 iOS 6.x - no slide

' CODE ‘ DATA | |

O0X3FFFFFFF

0x30000000 iI0S 6.x - maximum slide

‘ ‘ CODE \ DATA '

0X3FFFFFFF

Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 o 45

Part V

iOS 6 and the Partial Code-signing Vulnerability

Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 » 46

Partial Code-signing Vulnerability (iOS 4)

in iOS 4.x jailbreaks the method of choice to launch untether exploits
when a mach-o is loaded the kernel will load it as is

a possible signature will be registered

missing signature is okay until a not signed executable page is accessed

dyld was tricked with malformed mach-o data structures to execute code

Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 47

shiffLoadCommands (iOS 4.3.4)

® function does pre-handling of mach-o load commands

® iOS 4.3.4 adds protection against partial code signing

® mach-o load commands must be inside a segment

® mach-0

® macnhn-o

0ag

0ag

commands can only be in R + X segment

commands may not be partially in a segment

m effect is that once dyld maps the header R+X it can only continue to work on it if there is a valid signature

Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 * 48

\
<) SektionEins

Partial Code-signing Vuln (iOS 4.3.4-i0S 5.1.1)

protection in sniffLoadCommands could be bypassed
® by having a RW- LC_SEGMENT64 for mach-o header
® and a fake R-X LC_SEGMENT for mach-o header
disclosed at CanSecWest 2012 - here on stage

worked because kernel handles LC_SEGMENT64 and dyld did not

magic is that dyld will read mach-o header from from address in memory

Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 49

shiffLoadCommands (iOS 6.0)

® {OS 6.0 adds protection against CSW 2012 trick to sniffLoadCommands

o ifa LC_SEGMENT64 load command is found an exception is thrown

m CSW 2012 trick was already partially broken after iOS 5.1.1

® iniOS 5.1.1 AMFI verified existence of a code signing blob

N\
Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 50 <) SektionEins

Load Command Segment Override (iOS 6.0-6.1.2)

® bug used by evasiOn
® kernel not directly involved in loading dynamic libraries only dyld is

e dyld could be tricked with a malicious dylib
® contains real R-X segment with load commands in it
® contains second R-- segment that contains copy of load commands
® virtual address of both segments is set to same position

® |ater segment in mach-o will replace previous in memory

® when dyld accesses header it is in RO memory = no sig needed = bypass

N\
Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 51 <) SektionEins

shiffLoadCommands (iOS 6.1.3 beta 2)

® iOS 6.1.3 beta 2 adds additional protections to snitfLoadCommands
® |oad commands must now be in one segment only
® for dynamic libraries a second sniff pass is added

® all segments must not intersect the R-X segment containing the load
commands

m cvasiOn untether killed

Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 52

Part Vi

iOS 6.1 and Launch-Daemon-Code-Signing

Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 53

Launch Daemons to launch Untethers

® iniOS 5.x jailbreaks were launched on boot via launch daemons
® |aunch daemons are plists describing system services

<?xml version="1.0" encoding="UTF-8"7?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://
www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>Label</key>
<string>jb</string>
<key>ProgramArguments</key>
<array>
<string>/usr/sbin/corona</string>
<string>-£f</string>
<string>racoon-exploit.conf</string>
</array>
<key>WorkingDirectory</key>
<string>/usr/share/corona/</string>
<key>RunAtLoad</key>
<true/>
<key>LaunchOnlyOnce</key>
<true/>
<key>DisableAslr</key> <
<true/>
</dict>
</plist>

DisableAsIr was removed from iOS 5.1

N\
Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 54 <) SektionEins

Launch-Daemon-Code-Signing (l)

- ——— e e e —————— e — e e —— e~
]

bool launchctl_enforce_codesign()
{
abuse of launch daemons |lead char buffer[1024];

. . char =xp, *xtmp = NULL;
to new iOS 6.1 security feature size_t len;

int res = @;

launch daemon loading is now len = sizeof(buffer);

. if (!sysctlbyname("kern.bootargs”, buffer, &len, @, @))

code signed {
p = strnstr{buffer, "cs_enforcement_disable=", len});

_ _ if (p)

implemented in /bin/launchctl res = strtoul(p + 23, 0, 18);
p = strnstr(buffer, "launchctl_enforce_codesign=", len);
if (p)

: {
can be bypassed by setting L+ Cstreont(p + 21, simp, 10 — o

kernel boot arguments , recd

(not possible without low-level exploit) }
return res == @;

N\
Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 55 <) SektionEins

Launch-Daemon-Code-Signing (ll)

without launch-daemon-code-signing
/bin/launchctl SCANS /System/Library/LaunchDaemons for defined
launch daemons and loads them

with activated launch-daemon-code-signing
a big plist with all defined launch daemons is loaded instead

launch daemon can only be loaded if it is defined in the plist and exists on disk

if (!LaunchDaemonCachePlist)
{
length = @;
xpcd_cache = dlopen("/System/Library
if (!'xpcd_cache)
{
dlerror_msg = dlerror();
launchct1_log(3, "cache loading failed: dlopen
goto errorl;
}
__xpcd_cache = dlsym{xpcd_cache, "
if (!_xpcd_cache)
{
msg = "cache loading f:
goto LABEL_6;
}
if (!'dladdr(__xpcd_cache, &d1_info))

N\
Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 56 <) SektionEins

Launch-Daemon-Code-Signing (lll)

big launch daemon plist is loaded from
/System/Library/Caches/com. apple.xpcd/xpcd cache.dylib

this dynamic library is within the dyld_shared_cache and therefore code signed
symbol xpcd cache must exist

but binary plist is take from sectiondata of _ TEXT:: xpcd cache

if (!LaunchDaemonCachePlist)
{
length = @;
xpcd_cache = dlopen("/System/Library
if (!'xpcd_cache)
{
dlerror_msg = dlerror();
launchct1_log(3, "cache loading failed: dlopen
goto errorl;
}
__xpcd_cache = dlsym{xpcd_cache, "
if (!_xpcd_cache)
{
msg = "cache loading f:
goto LABEL_6;
}
if (!'dladdr(__xpcd_cache, &d1_info))

Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 57

XPCD_CACHE.PLIST

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE plist PUBLIC "-~//Apple//DTD PLIST 1.@//EN" "http://www.apple.com/DTDs/PropertyList-1.0.d}
<plist version="1.0">
<dict>
<key>CreationDate</key>
<date>2013-13-13T13:13:13Z</date>
<key>LaunchDaemons</key>
<dict>
<key>/System/Library/LaunchDaemons/com.apple.AOSNotification.plist</key>
<dict>
<key>JetsamProperties</key>
<dict>
<key>JetsamMemoryLimit</key>
<integer>1024</integer>
<key>JetsamPriority</key>
<integer>-49</integer>
</dict>
<key>KeepAlive</key=>
<dict>
<key>PathState</key>
<dict>
<key>/var/mobile/Library/Preferences/com.apple.AOSNotification.FMFAccounts.plist</key>
<true/>
<key>/var/mobile/Library/Preferences/com.apple.AOSNotification. launchd</key>
<true/>
</dict>
</dict>

N\
Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 58 <) SektionEins

Launch-Daemon-Code-Signing Security

How secure Apple wanted Launch-Daemon-Code-Signing to be...

Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 59

Launch-Daemon-Code-Signing Security

How secure Launch-Daemon-Code-Signing is right now...

9 ,n’l v.:‘r ;
(4 /
i |
;"-/'/'

Stefan Esser ¢ iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 60

Launch-Daemon-Code-Signing Security

code signing itselt seems to stop loading arbitrary launch daemons
but Apple forgot / or ignored /etc/launchd. conf
/etc/launchd.conf defines commands launchctl executes on start

attacker can execute arbitrary existing commands

bsexec .. /sbin/mount -u -o rw,suid,dev /
setenv DYLD INSERT LIBRARIES /private/var/evasiOn/amfi.dylib
load /System/Library/LaunchDaemons/com.apple.MobileFileIntegrity.plist

bsexec .. /private/var/evasiOn/evasiOn
unsetenv DYLD INSERT LIBRARIES

bsexec .. /bin/rm -f /private/var/evasiOn/sock
bsexec .. /bin/ln -f /var/tmp/launchd/sock /private/var/evasiOn/sock

N\
Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 61 <) SektionEins

FAQ: Why not put old launchctl binary on device?

Q: “If only the newest iOS 6.1 launchctl binary
implements this code signing. Why not put an iOS 6.0
launchctl binary on the device to bypass this protection?”

A: "System binaries like launchctl do not come with a valid code signing
signature from Apple. Instead they come only with the table of memory page
hashes and entitlements. When the kernel loads such a binary it hashes these
tables and checks if the hash is in a whitelist inside the kernel (a.k.a. trust cache).

The old launchctl binary will not be accepted because it is not in the trust cache
of the new kernel.”

Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 62

Final Words

with iOS 6 Apple has tried to kill all public techniques

finally kills some stuff that was previously known and ignored for 10 years

the new mitigations make exploitation a lot harder

when launch daemon code signing is hardened a bit more,
persisting on iDevices will become incredibly hard

however there are still weaknesses in most of the protections

... and tons of kernel information leaks

Y
Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 63 <) SektionEins

Questions

N\
Stefan Esser ® iOS 6 - Exploitation 280 Days Later ® March 2013 ¢ 64 <) SektionEins

