
Google Confidential and Proprietary 1

The info leak era on software exploitation

Fermin J. Serna - @fjserna – fjserna@gmail.com

Google Confidential and Proprietary 2

Agenda

•  Background info on info leaks
•  What is an info leak?

•  Previous examples

•  Why were they not needed before?

•  Why are they needed now?

•  Info leak techniques:
§  Heap overflows

§  Type confusion vulnerabilities

§  UAF and non virtual methods and other valuable operations (controlled read/
write, free() with controlled pointer, on demand vtables, …)

§  Application specific vulnerabilities: CVE-2012-0769

§  Converting a use after free into an universal XSS

•  Envisioning the future of exploitation

Google Confidential and Proprietary 3

Who is @fjserna?

Fermin J. Serna – @fjserna - fjserna@gmail.com

• Information Security Engineer at Google since Dec/2011

• Previously Security Software Engineer at Microsoft – MSRC
•  Co-owner and main developer of EMET

• Twitter troll at @fjserna

• Writing exploits since 1999: http://zhodiac.hispahack.com
•  HPUX PARISC exploitation Phrack article

Google Confidential and Proprietary 4

Background info on info leaks

Google Confidential and Proprietary 5

What is an info leak?

•  Relevant quotes:
•  “An info leak is the consequence of exploiting a software vulnerability in

order to disclose the layout or content of process/kernel memory”, Fermin
J. Serna

•  “You do not find info leaks… you create them”, Halvar Flake at Immunity’s
Infiltrate conference 2011

•  Info leaks are needed for reliable exploit development
•  They were sometimes needed even before ASLR was in place

•  Not only for ASLR bypass, as widely believed, which is a subset of
reliable exploit development

Google Confidential and Proprietary 6

Previous examples (incomplete list)

•  Wu-ftpd SITE EXEC bug - 7350wu.c – TESO
•  Format string bug for locating shellcode, value to overwrite…

•  IE – Pwn2own 2010 exploit - @WTFuzz
•  Heap overflow converted into an info leak

•  VUPEN has a nice example too at their blog

•  Comex’s Freetype jailbreakme-v3
•  Out of bounds DWORD read/write converted into an info leak

•  Duqu kernel exploit, HafeiLi’s AS3 object confusion, Skylined write4
anywhere exploit, Chris Evan’s generate-id(), Stephen Fewer’s
pwn2own 2011, …

Google Confidential and Proprietary 7

Why were they not needed before?

•  We were amateur exploit developers
•  Jumping into fixed stack addresses in the 2000

•  We were lazy
•  Heap spray 2 GB and jump to 0x0c0c0c0c

•  Even when we became more skilled and less lazy there were
generic ways to bypass some mitigations without an info leak

•  Jump into libc / ROP to disable NX/DEP

•  Non ASLR mappings to evade… guess??? ASLR

•  JIT spraying to evade ASLR & DEP

Google Confidential and Proprietary 8

Why were they needed now?

•  Reliable exploits, against latest OS bits, are the new hotness
•  Probably because there is lots of interest, and money, behind this

•  Security mitigations now forces the use of info leaks to bypass
them

•  Mandatory ASLR in Windows 8, Mac OS X Lion, *nix/bsd/…, IOS, …

•  Generic ways to bypass these mitigations are almost no longer
possible in the latest OS bits

Google Confidential and Proprietary 9

Let’s use an example…

int	 main(int	 argc,	 char	 **argv)	 {	

char	 buf[64];	

	 	 	 __try	 {	

	 	 	 	 	 	 	 memcpy(buf,argv[1],atol(argv[2]));	

	 	 	 }	 __except(EXCEPTION_CONTINUE_SEARCH)	 {	

	 	 	 }	 	 	 	

	 	 return	 0;	

}	

	

Google Confidential and Proprietary 10

Let’s exploit the example…

•  No mitigations: overwrite return address of main() pointing to the
predictable location of our shellcode

•  GS (canary cookies): Go beyond saved EIP and target SEH record
on stack. Make SEH->handler point to our shellcode

•  GS & DEP: Same as above but return into libc / stack pivot & ROP

•  GS & DEP & SEHOP: Same as above but fake the SEH chain due
to predictable stack base address

•  GS & DEP & SEHOP & ASLR: Pray or use an info leak for reliable
exploitation

Google Confidential and Proprietary 11

Info leaking techniques

Google Confidential and Proprietary 12

Info Leak techniques

•  Applicable to any target:
§  With alloc/free primitives
§  With specific object creation primitives

§  With heap spraying capabilities (able to later read the heap spray)

•  Examples well researched:
§  Web Browsers

§  Any host of Flash (MS Office, pdf, …)

•  Generally speaking “Any host of attacker controlled scripting”

•  But not limited…
§  Example: alloc/free primitives on MS Office Excel BIFF record parsing

Google Confidential and Proprietary 13

Info Leak techniques

•  Stack overflows: Partial overwrites

•  Heap overflows
§  Overwriting the string.length field
§  Overwriting the final NULL [w]char

•  UAF with non virtual methods and other valuable operations
§  Member variables and write operations

§  Member variables and read operations

§  free() with a controlled pointer

§  On demand function pointers or vtables

•  Type confusion

•  Converting a use after free into an universal XSS

•  Application specific vulnerabilities: CVE-2012-0769

Google Confidential and Proprietary 14

Stack Overflows (Partial overwrites)

•  Continue of execution (CoE) and heap spraying is needed

•  Overwrite the target partially, leaving intact some original bytes

•  Return into an info leaking gadget within the page that will write
“something” into our heap spray.
§  Assuming at least one register contains something useful (i.e EBX)

 mov [ebp], ebx
 […]
 retn XXX ß determined by the CoE

Stack based buffer

Other variables

Saved EBP

Saved EIP

Function args

 0x10563480 0x7FE39823
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA… 0x41414141 0x7FE34141

Google Confidential and Proprietary

•  Heap massaging is needed
§  Place a JS string and an object after the heap buffer that will be overflowed

•  Overwrite the first four bytes of a JS string heap allocation
§  First four bytes: String length

§  Overwrite value: 0xFFFFFFFF

•  Later on with JS you can read the entire address space (relative to
your buffer) with:

 var content=str.substr(rel_address,rel_address+2)

15

Heap Overflows (Overwriting the string.length field)

Heap based buffer

JS string (var str)

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA… Size: 0xFFFFFFFF Blah 0x7F347690
 Size: 0x00000004 Blah 0x7F347690

Object

Google Confidential and Proprietary

•  Heap massaging is needed
§  Place a string and an object after the heap buffer that will be overflowed

•  Overwrite the last [w]char of a string heap allocation

•  Later on with JS you can read passed the string boundaries:
 var content=elem.getAttribute(‘title’)

16

Heap Overflows (Overwriting the final null [w]char)

Heap based buffer

Title attribute string

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA… AAAAAA 0x7F347690
 Blah\0\0 0x7F347690

Object

Google Confidential and Proprietary 17

Use after free

•  Applicable also to uninitialized variables once you got the pointer
pointing to your fake object.

•  We are not looking for these “awesome” type of crashes:

mov ecx, [eax] ß eax points to the object and the vtable_ptr gets dereferenced

call dword ptr [ecx+offset] ß call a virtual function of the object

•  We are looking for some other “interesting” type of scenarios:

push ecx push object pointer to the stack
call module!Object::NonvirtualFunction

•  So we do not AV when calling into a virtual function and more
interesting things can happen later on…

Google Confidential and Proprietary 18

Use after free (member variables and read ops)

•  Read some value from a controlled place in memory
§  Hopefully getting it back to the attacker somehow (JS?)

class	 cyberpompeii	 {	

	 	 	 	 private:	

	 	 	 	 	 	 	 void	 *	 ptr;	 	 attacker	 will	 control	 this	 once	 he	 gets	 the	 free	 chunk	

	 	 	 	 public:	

	 	 	 	 	 	 DWORD	 f()	 {	 	

	 	 	 	 	 	 	 	 	 	 	 return	 *(DWORD	 *)ptr;	

	 	 	 	 	 	 }	 	 	 	

};	

Google Confidential and Proprietary 19

Use after free (member variables and write ops)

•  Write some value to a controlled place in memory

•  Strategy:
§  Write into 0x41414141 hoping it writes into our heap spray
§  Calculate the offset to the initial of the string by reading the JS string and locating

the new value

§  Write to the string.length of the JS string.

§  Use the substring trick previously mentioned

class	 cyberpompeii	 {	

	 	 	 	 private:	

	 	 	 	 	 	 	 void	 *	 ptr;	 	 attacker	 will	 control	 this	 once	 he	 gets	 the	 free	 chunk	

	 	 	 	 public:	

	 	 	 	 	 	 void	 f()	 {	 	

	 	 	 	 	 	 	 	 	 *(DWORD	 *)ptr|=0x80000000;	

	 	 	 	 	 }	 	 	 	

};	

Google Confidential and Proprietary 20

Use after free (free() with a controlled pointer)

•  Heap massaging and predictable layout (some heap
implementations) required.

•  Strategy:
§  Spray JS strings of size X
§  Force the free of one of these strings through the vulnerability

§  Force the allocation of hundreds of objects of size X
•  One of them will get the forced freed string

§  Read the vtable pointer from the JS reference of the freed string

Google Confidential and Proprietary 21

Use after free (free() with a controlled pointer)
class	 cyberpompeii	 {	

	 	 	 	 private:	

	 	 	 	 	 	 	 void	 *	 ptr;	

	 	 	 	 public:	

	 	 	 	 	 	 void	 f()	 {	 	

	 	 	 	 	 	 	 	 	 free(ptr);	

	 	 	 	 	 }	 	 	 	

};	

AAAAAAAAAAAAAAAAA

String spray

AAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAA

AAAA // vtable_ptr

[…]

0x0c0c4560 // ptr

[…]

Freed object with controlled
contents

0x7f3E4560 AAAAAAAAA

Step1:

Use the vulnerability to force

the free of a JS string

Step2:

Use a primitive to allocate X

objects of the same size Y

Step3:

Read the vtable ptr from

JS (reference to the string)

Google Confidential and Proprietary 22

Use after free (On demand [function] ptrs | vtables)

•  Assuming you get the freed chunk via a JS readable string

•  Find a non virtual function, exercisable via your primitives, that will
write to a member variable a function pointer, an on demand vtable
(or still interesting a heap address)

•  Read ptr back from JS string that got the object chunk

class	 cyberpompeii	 {	

	 	 	 	 private:	

	 	 	 	 	 	 	 void	 *	 ptr;	

	 	 	 	 public:	

	 	 	 	 	 	 void	 f()	 {	 	

	 	 	 	 	 	 	 	 	 HMODULE	 dll=LoadLibrary(“kernel32.dll”);	

	 	 	 	 	 	 	 	 	 ptr=GetProcAddress(dll,”WinExec”);	

	 	 	 	 	 }	 	 	 	

};	

uint32_ptr Vtable_ptr

[…]

void * ptr

[…]

Object

AAAAAAAAAAAAAA

[…]

AAAAAAAAAAAAA

Memory chunk claimed by a string

AAAAAAAAAAAAAA

[…]

AAAAA

0x7F345678

AAAAAAAAAAAA

Google Confidential and Proprietary 23

Type confusion

•  Replace the freed object memory chunk (size X) with a different
object type of same size X.
§  Virtual call friendly, since the vtable_ptr will point to a valid place, but different

than expected

§  The virtual function called must have the same number of arguments for CoE

•  Does this new virtual function perform any of the previously mentioned, and
useful, operations? And does not crash the application? J

class	 replaced_object	 {	

	 	 	 	 private:	

	 	 	 	 	 	 	 void	 *	 ptr;	

	 	 	 	 public:	

	 	 	 	 	 	 virtual	 void	 bar()	 {	 	

	 	 	 	 	 	 	 	 	 HMODULE	 dll=LoadLibrary(“kernel32.dll”);	

	 	 	 	 	 	 	 	 	 ptr=GetProcAddress(dll,”WinExec”);	

	 	 	 	 	 }	 	 	 	

};	

class	 original_object	 {	

	 	 	 	 private:	

	 	 	 	 	 	 	 void	 *	 blahhh;	

	 	 	 	 public:	

	 	 	 	 	 	 virtual	 void	 foo()	 {	 	

	 	 	 	 	 	 	 	 	 	 return	 -‐1;	

	 	 	 	 	 	 }	 	 	 	

};	

Google Confidential and Proprietary 24

Use after free converted into an UXSS

•  If everything fails we still have application specific attacks
§  More to come later on Flash CVE-2012-0769

•  Not an info leak but cool scenario:
§  Use after free on an object derived from CElement (with rare size such as table,

script, …) bound to a JS variable on page X

§  Page X hosts hundreds of iframes pointing to the attacked domain Y (same
process on some browsers)

§  One of the CElement of domain Y gets the freed chunk

§  Page X can inject other JS code on domain Y bypassing the same origin
policy, through the reference to the original, and freed, object.

•  Sounds crazy?
§  It works, but not reliably.

Google Confidential and Proprietary 25

Use after free converted into an UXSS

Attacker page

Iframe Target Iframe Target

Iframe Target Iframe Target

Iframe Target Iframe Target

Iframe Target

Iframe Target

Iframe Target

Iframe Target

Iframe Target Iframe Target

Step1: Attacker triggers the vuln: free an object (size X)
while holding a reference through elem

Step 2: Attacker sprays with iframes hoping one of them

 will allocate this freed memory with a CElement

At this point Attacker page holds a reference (elem) to a
CElement on target frame

Step 3: Use insertAdjacentElement, appenChild,
innerHTML, … to insert a script tag with attacker JS in the
target frame

CElement var elem =

Google Confidential and Proprietary 26

Demo time!

•  Target: IE9/Win7
§  Using a patched vulnerability…CVE-2012-1889
§  MSXML un-initialized stack variable

•  Using one of the techniques mentioned before…

•  Do not ask for the exploit or further information
§  I will not share weaponized code or information for exploiting this vulnerability with

anyone!

Google Confidential and Proprietary 27

CVE-2012-0769: the case of the
perfect info leak

Google Confidential and Proprietary 28

The vulnerability

•  Universal info leak
•  Already fixed on Adobe’s Flash in March/2012

•  99% user computers according to Adobe

•  Affects browsers, Office, Acrobat, ...

•  Unlikely findable through bit flipping fuzzing. But, Likely findable
through AS3 API fuzzing

•  Got an email requesting price for the next one (6 figures he/she
said)

•  Detailed doc at http://zhodiac.hispahack.com

Google Confidential and Proprietary 29

The vulnerability (CVE-2012-0769)

public function histogram(hRect:Rectangle = null):Vector.<Vector.<Number>>

Google Confidential and Proprietary 30

The exploit (CVE-2012-0769)

•  Convert histogram to actual leaked data
function	 find_item(histogram:Vector.<Number>):Number	 {	 	 	

	 var	 i:uint;	 	

	 for(i=0;i<histogram.length;i++)	 {	

	 	 if	 (histogram[i]==1)	 return	 i;	

	 }	

	 return	 0;	

	 }	

	 [...]	 	

	 memory=bd.histogram(new	 Rectangle(-‐0x200,0,1,1));	

	 data=(find_item(memory[3])<<24)	 +	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (find_item(memory[0])<<16)	 +	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (find_item(memory[1])<<8)	 +	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (find_item(memory[2]));	

Google Confidential and Proprietary 31

The exploit (CVE-2012-0769)

•  Convert relative info leak to absolute infoleak

•  Need to perform some heap feng shui on flash
•  Defragment the Flash heap

•  Allocate BitmapData buffer

•  Allocate same size buffer

•  Trigger Garbage Collector heuristic

•  Read Next pointer of freed block

Google Confidential and Proprietary 32

The exploit (CVE-2012-0769)

Common Flash heap state

Google Confidential and Proprietary 33

The exploit (CVE-2012-0769)

Defragmented heap

Google Confidential and Proprietary 34

The exploit (CVE-2012-0769)

After allocating the BitmapData buffer

Google Confidential and Proprietary 35

The exploit (CVE-2012-0769)

After allocating the same size blocks

Google Confidential and Proprietary 36

The exploit (CVE-2012-0769)

After triggering GC heuristics

Google Confidential and Proprietary 37

The exploit (CVE-2012-0769)

•  Leak the next pointer of the freed block

•  bitmap_buffer_addr=leaked_ptr-(2*0x108)
•  0x108 = 0x100 + sizeof(flash_heap_entry)

•  0x100 = size use for BitmapData

•  Once we have bitmap_buffer_addr we can read anywhere in the
virtual space with:

data=process_vectors(

bd.histogram (new Rectangle(X-bitmap_buffer_addr,0,1,1))

);

Google Confidential and Proprietary 38

The exploit (CVE-2012-0769) on Windows

Target USER_SHARE_DATA (0x7FFE0000)

X86

Google Confidential and Proprietary 39

The exploit (CVE-2012-0769) on Windows

X64

Google Confidential and Proprietary

The exploit (CVE-2012-0769) on Firefox

40

Google Confidential and Proprietary

The exploit (CVE-2012-0769) on IE

41

Google Confidential and Proprietary

The exploit (CVE-2012-0769) on Chrome

42

Google Confidential and Proprietary 43

Envisioning the future of exploitation

Google Confidential and Proprietary 44

The future of exploitation as I see it…

•  It will get harder, weak exploit developers will be left behind,
profitable profession if you can live to expectations.

•  It will require X number of bugs to reliably exploit something:
•  The original vulnerability

•  The info leak to locate the heap (X64 only).
•  No more heap spraying.

•  The info leak to build your ROP in order to bypass DEP

•  The sandbox escape vulnerability OR the EoP vulnerability

•  In future… imagine when applications have their own transparent VM…
•  The VM escape vulnerability to access interesting data on other VM

Google Confidential and Proprietary 45

@fjserna – fjserna@gmail.com
Q&A

