
Analysis of iOS 9.3.3 Jailbreak
&

Security Enhancements of iOS 10

Team Pangu

Agenda

✤ CVE-2016-4654

✤ Exploit Strategy

✤ iOS 10 Security Enhancements

✤ iPhone 7 New Protection

✤ Conclusion

Timeline of the Kernel Bug

✤ We showed Jailbreak for iOS 10 beta1 on MOSEC 2016

✤ The bug was fixed in iOS 10 beta2

✤ We released Jailbreak for 9.2-9.3.3 on 24th July

✤ Exploited the kernel bug from an installed App

✤ Apple published 9.3.4 to fix it on 4th Aug Morning

✤ https://support.apple.com/en-us/HT207026

✤ We gave a talk at Blackhat 2016 on the same day

https://support.apple.com/en-us/HT207026

CVE-2016-4654

✤ Any App can exploit this bug to attack kernel

✤ It’s a heap overflow bug in IOMobileFrameBuffer

✤ Length of the overflow is controlled

✤ Data of the overflow is partially controlled

✤ Full discussion of this, and other past exploits can be
found in “*OS Internals” volume III, by Jonathan Levin

CVE-2016-4654

✤ “IOMobileFramebuffer::swap_submit(IOMFBSwap *)”

✤ IOMFBSwap is input from user-land

✤ v33 comes from v31

✤ v31 comes from swap+216+4*v15

✤ No size check of v33 in the loop

✤ Overflow of v34

Basics of IOMobileFrameBuffer

✤ It is a kernel extension for managing the screen frame buffer

✤ It is controlled by the user-land framework IOMobileFramebuffer.framework

✤ Output from ioreg for iPhone 6

✤ AppleMobileADBE0 <class
IORegistryEntry:IOService:IOMobileFramebuffer:AppleDisplayPipe:Appl
eH7DisplayPipe:AppleCLCD:AppleMobileADBE0, id 0x1000001de,
registered, matched, active, busy 0 (4 ms), retain 9>

✤ Open IOMobileFramebufferUserClient via IOServiceOpen

✤ IOServiceMatching with “AppleCLCD”

Basics of IOMobileFrameBuffer

✤ Locate the sMethods table used by externalMethod

✤ selector=5 with input structure is calling swap_submit

✤ It finally goes to IOMobileFramebuffer::swap_submit to trigger the overflow

✤ selector=4 with one output scalar is calling swap_begin

✤ It creates an IOMFBSwapIORequest object which is required for calling
swap_submit

✤ It returns the request id in the output scalar

swap_submit

✤ The input structure is passed to swap_submit as IOMFBSwap data

✤ Size of structure must be 544 for 9.3.x or 424 for 9.2.x

✤ It firstly gets the IOMFBSwapIORequest object by id stored in swap+24

✤ Then it fills the request object according to our input swap in a loop with index from 0 to 2

✤ It will try to find IOSurface by id stored in swap+28/32/36 and save the pointers in
request+32/36/40 object

✤ Heap overflow occurs when filling request+392 with swap+228

✤ No size check of count stored in swap+216/220/224

✤ Before exit it will check if the swap is ok, if not it will release IOMFBSwapIORequest and
IOSurface objects

Agenda

✤ CVE-2016-4654

✤ Exploit Strategy

✤ iOS 10 Security Enhancements

✤ iPhone 7 New Protection

✤ Conclusion

Control the Overflow

✤ The overflow size is quite easy to control from input+216

✤ IOMFBSwapIORequest size is 872 in kalloc.1024

✤ We can overwrite content of next kalloc.1024 object

✤ The overflow occurs while copying from input+228 to request+392

✤ Remember there is size verification of input so we can’t control the overflow
data directly

✤ Actually the input data is in a mach message handled by MIG and it’s also in
kalloc.1024 zone

✤ It’s possible to control the uninitialized memory content by heap fengshui

Next Step ？

✤ Do heap fengshui in kalloc.1024

✤ [IOMFBSwapIORequest]+[victim object]

✤ We can overwrite data of the victim object

✤ Need to bypass KASLR

✤ How to choose the victim object?

Exploit Strategy A

✤ Find an object in kalloc.1024 and it stores its size at the beginning

✤ Overwrite the size of the object to a bigger one

✤ Free into wrong zone -> read/write of next kalloc.1024 kernel object

✤ Doesn’t work on iOS 10 (we will discuss it later)

✤ Not so stable because of only 4 objects are in one page for
kalloc.1024

✤ Should work for both 32bit and 64bit devices

Exploit Strategy B

✤ Target iOS 10 beta + 64bit devices

✤ SMAP actually doesn’t exist, kernel mode can access user-land data

✤ Choose IOMFBSwapIORequest as the victim object

✤ All requests are linked, request+16 stores next request pointer

✤ request+0 stores vtable pointer

✤ request+328 stores the request id

✤ Overwrite the next pointer to a user-land address to hijack the whole request list

✤ We can read/write our controlled fake IOMFBSwapIORequest

Leak Kernel Address

✤ We call swap_submit again with our fake request id and a
valid IOSurface id

✤ We can get the IOSurface pointer at request+32

✤ Get property of “IOMFB Debug Info” will give us more
detailed informations

✤ It will retrieve information of all swap requests

✤ Also it will try to get data of IOSurface

Leak Kernel Address

✤ It will read 4 bytes at IOSurface+12 as “src_buffer_id”

✤ We can set request+32 from IOSurface to IOSurface-12

✤ Get the lower 4 bytes of IOSurface vtable

✤ Set it to IOSurface-8 again to get the higher 4 bytes of IOSurface vtable

✤ We can now calculate the kernel base address

Kernel Code Execution

✤ Remember if the swap data is not correct, it will call
IOMFBSwapIORequest::release before exit

✤ And we could totally control the vtable of the fake
request in user-land memory

✤ X0 and X8 are under control

Arbitrary Kernel Reading

✤ Gadgets for reading

Arbitrary Kernel Writing

✤ Gadgets for writing

Fix the Bug

Agenda

✤ CVE-2016-4654

✤ Exploit Strategy

✤ iOS 10 Security Enhancements

✤ iPhone 7 New Protection

✤ Conclusion

Hardened JIT Mapping

✤ --X mapping is now supported

✤ Create two mappings of the physical JIT memory

✤ One is --X

✤ One is RW-

✤ Keeps the location of RW- secret

Kernel Heap Management

✤ For iOS 9

✤ Not all zones has page meta data

✤ Free into wrong zone works well when target is
none page list zone

✤ Enough to bypass KASLR and get code execution

Kernel Heap Management

✤ For iOS 10

✤ There are page meta data for all zones

✤ Prevent freeing into wrong zone, check zfree code

struct zone_page_metadata *page_meta = get_zone_page_metadata((struct
zone_free_element *)addr, FALSE);

if (zone != PAGE_METADATA_GET_ZONE(page_meta)) {
panic("Element %p from zone %s caught being freed to wrong zone %s\n",

addr, PAGE_METADATA_GET_ZONE(page_meta)->zone_name, zone->zone_name);
}

Kernel Heap Management

✤ New function kfree_addr will automatically get size
according to address

✤ Overwrite size of object no longer works

Enhanced Sandbox

✤ Platform profile is more restricted

✤ Profile size is 0x10DE for 9.3 and 0x1849 for iOS 10

✤ More operations are checked of iOS 10

✤ file-map-executable

✤ system-kext-query

✤ process-exec-interpreter

✤ process-exec*

✤ file-write-create

✤ …

KPP

✤ Change of the kernelcache memory layout

✤ Put all code and const together

✤ Put all RW data together

✤ Makes KPP more efficient

✤ __got is now under protection!

KPP

✤ Time attacking is still practical

✤ Patch/Restore in a short time window

✤ Kernel heap can be market as RWX

✤ Kernel shell code works well

✤ BUT different story for iPhone 7 !

AMFI

✤ Fix a potential race in validateCodeDirectoryHashInDaemon

✤ It’s possible to replace the executable file to a valid one
after kernel resolve the code signature and ask amfid to
verify it

✤ Now amfid will also return the cdhash of the file it
verified, the hash must match the one kernel already read

AMFI

✤ Before iOS 10 amfid only checks return value of MISValidateSignature

✤ Easy to bypass by hijacking it to some function just return 0

✤ Now it calls MISValidateSignatureAndCopyInfo instead and get cdhash to
return to kernel

Fix Lots of Unpublished Bugs

✤ Apple security team are hunting bugs

✤ Two bugs of ours were fixed in iOS 10

✤ One heap overflow and one UAF

✤ Researchers report bugs to Apple

✤ task_t related issues

✤ https://googleprojectzero.blogspot.jp/2016/10/taskt-considered-harmful.html

✤ Multiple memory safety issues in mach_ports_register

✤ https://bugs.chromium.org/p/project-zero/issues/detail?id=882

✤ …

✤ Did your bugs get patched?

https://googleprojectzero.blogspot.jp/2016/10/taskt-considered-harmful.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=882

Agenda

✤ CVE-2016-4654

✤ Exploit Strategy

✤ iOS 10 Security Enhancements

✤ iPhone 7 New Protection

✤ Conclusion

Known Weakness

✤ It’s actually easier to write kernel exploit for 64bit
devices because of NO SMAP

✤ Current KPP architecture is not capable to prevent
time attacking

✤ Kernel shellcode allows kernel level rootkit

KPP of Old Devices

✤ Kernel runs at EL1

✤ KPP monitor runs at EL3

✤ SMC(secure monitor call) causes an exception to EL3

✤ After kernel finish initialization, it calls SMC to tell
KPP to init all checksums of protected memory

Switch to iPhone 7

KPP of iPhone 7

✤ Apparently there is no SMC

✤ The initialize code retrieves physical addresses of
“__PRELINK_TEXT” and “__LAST” segments. It then store
them in special system registers which requires minimum
EL=EL2

✤ All code and const values are between “__PRELINK_TEXT”
and “__LAST”

✤ This new protection is obviously implemented in hardware

KPP of iPhone 7

✤ It prevents writing to the protected physical memory

✤ Can’t touch code memory

✤ Time attacking doesn’t work anymore

✤ It prevents executing outside of the protected physical memory
range

✤ Can’t execute shellcode in kernel

✤ ROP is still an option

SMAP on iPhone 7

✤ Also we notice there is kind of SMAP on iPhone 7

✤ Dereference valid user-land address will simply
hang the CPU, never get return

✤ Dereference invalid user-land address still cause a
panic

Agenda

✤ CVE-2016-4654

✤ Exploit Strategy

✤ iOS 10 Security Enhancements

✤ iPhone 7 New Protection

✤ Conclusion

Conclusion

✤ Apple keeps putting lots of efforts to make their
products more secure

✤ It’s more easier for Apple to bring security feature
which is combined with hardware and software

✤ iOS kernel exploit is now harder and more valuable

Q&A

