
death of the vmsize=0 dyld trick
(one more way to persist on your iPhone killed)

SyScan 2015 Bonus Slides

Stefan Esser <stefan.esser@sektioneins.de>

http://www.sektioneins.de

mailto:stefan.esser@sektioneins.de

Stefan Esser • death of the vmsize=0 trick - SyScan Bonus Slides • March 2015 •

Who am I?

Stefan Esser

• from Cologne / Germany

• in information security since 1998

• invested in PHP security from 2001 to 20xx

• since 2010 focused on iPhone security (ASLR/jailbreak)

• founder of SektionEins GmbH

2

Stefan Esser • death of the vmsize=0 trick - SyScan Bonus Slides • March 2015 •

Introduction

• at SyScan 2015 I made a talk about

• how Apple failed to fix vulnerabilities used in iOS 678 jailbreaks over and over again

• how and why Chinese jailbreak teams took over the jb scene in 2014 

• during the talk I discussed “Patient ALPHA” an incomplete code signing bug that
Apple failed to analyse correctly and therefore had to issue 4 security updates for

• during the talk I also promised to disclose another incomplete code signing
vulnerability that Apple closed by accident with their patches for “Patient ALPHA”

• we should be fair in information security and not only discuss fail, but also  
show how they killed a bug (even if they most probably did not know about it)

3

Stefan Esser • death of the vmsize=0 trick - SyScan Bonus Slides • March 2015 •

Incomplete Codesigning

• simplified:

• if a page is not executable a missing code sig is not a problem

• if a page is executable there must be a code sig on first access

• prior to iOS 5 therefore jailbreaks would use ALL DATA dylibs to
exploit dyld via various meta-data structures

• around the end of iOS 4 Apple added checks to dyld to enforce load
commands are in an executable segment

• therefore while header parsing (first access) code sig is required

4

Stefan Esser • death of the vmsize=0 trick - SyScan Bonus Slides • March 2015 •

mach-o dynamic library loading

• mach-o dynamic libraries loaded by dyld

• load commands describe i.a. layout of
segments in memory

• virtual address and  
virtual size of segments

• file position and  
file size of segment

5

Stefan Esser • death of the vmsize=0 trick - SyScan Bonus Slides • March 2015 •

Wait a second …

• actually it is not that simple

• mach-o header is first loaded into stack

• initial LC parse is performed to collect info

• this info is used to map the file into memory

• segments are touched to enforce code sig

• another LC parse is performed to make dyld
use the mach-o header from paged memory

• more and more parsing

6

Stefan Esser • death of the vmsize=0 trick - SyScan Bonus Slides • March 2015 •

TOCTOU Problems

• this chain of events has some TOCTOU
(Time of Check Time of Use) problems

• attacking the code flow between
sniffLoadCommands and
crashIfInvalidCodesignature

• tricking e.g. mapSegments

• evad3rs tricked that function first, but
they went after replacing segment
mappings or stripping the X flag

• however there was a 0-day that tricked
this whole logic in a different way

7

Stefan Esser • death of the vmsize=0 trick - SyScan Bonus Slides • March 2015 •

mapSegments

• mapSegments goes through the list of known
segments and maps them one by one

• count of segments is calculated inside the
sniffLoadCommands functions

• mapSegments fully relies on that count

• apparently there will be problems if
sniffLoadCommands is counting the segments
wrong

8

Stefan Esser • death of the vmsize=0 trick - SyScan Bonus Slides • March 2015 •

sniffLoadCommands and Segment Counting

• code inside sniffLoadCommands counts LC_SEGMENT_COMMAND commands

• but it ignores segments if their VMSIZE is 0

9

 switch (cmd->cmd) {
 case LC_DYLD_INFO:
 case LC_DYLD_INFO_ONLY:
 *compressed = true;
 break;
 case LC_SEGMENT_COMMAND:
 segCmd = (struct macho_segment_command*)cmd;
 // ignore zero-sized segments
 if (segCmd->vmsize != 0)
 *segCount += 1;
 // <rdar://problem/7942521> all load commands must be in an executable segment
 if (context.codeSigningEnforced && (segCmd->fileoff < mh->sizeofcmds) && (segCmd->filesize != 0)) {
 if ((segCmd->fileoff != 0) || (segCmd->filesize < (mh->sizeofcmds+sizeof(macho_header))))
 dyld::throwf("malformed mach-o image: segment %s does not span al…”, segCmd->segname);

Stefan Esser • death of the vmsize=0 trick - SyScan Bonus Slides • March 2015 •

ImageLoaderMachO::ImageLoaderMachO (I)

• inside the constructor of ImageLoaderMachO the addresses of the
LC_SEGMENT_COMMAND load commands are put into a cache

• this is done to easier traverse through the list of segments

• the code also ignores segments with a VMSIZE=0

• IMPORTANT: this means that if the segment containing load commands has
vmsize=0 it is not in list of segments and will not be traversed by later code

10

 // construct SegmentMachO object for each LC_SEGMENT cmd using "placement new" to put
 // each SegmentMachO object in array at end of ImageLoaderMachO object
 const uint32_t cmd_count = mh->ncmds;
 const struct load_command* const cmds = (struct load_command*)&fMachOData[sizeof(macho_header)];
 const struct load_command* cmd = cmds;
 for (uint32_t i = 0, segIndex=0; i < cmd_count; ++i) {
 if (cmd->cmd == LC_SEGMENT_COMMAND) {
 const struct macho_segment_command* segCmd = (struct macho_segment_command*)cmd;
 // ignore zero-sized segments
 if (segCmd->vmsize != 0) {
 // record offset of load command
 segOffsets[segIndex++] = (uint32_t)((uint8_t*)segCmd - fMachOData);
 }
 }
 cmd = (const struct load_command*)(((char*)cmd)+cmd->cmdsize);
 }

Stefan Esser • death of the vmsize=0 trick - SyScan Bonus Slides • March 2015 •

ImageLoaderMachO::ImageLoaderMachO (II)

• IMPORTANT: internally all accesses to the mach-o header go through fMachOData

• so initially it is set to the stack  
(which is not executable and therefore requires no code signature)

• later on it is supposed to be pointing to the mapped executable segment containing
the load commands

11

 // construct SegmentMachO object for each LC_SEGMENT cmd using "placement new" to put
 // each SegmentMachO object in array at end of ImageLoaderMachO object
 const uint32_t cmd_count = mh->ncmds;
 const struct load_command* const cmds = (struct load_command*)&fMachOData[sizeof(macho_header)];
 const struct load_command* cmd = cmds;
 for (uint32_t i = 0, segIndex=0; i < cmd_count; ++i) {
 if (cmd->cmd == LC_SEGMENT_COMMAND) {
 const struct macho_segment_command* segCmd = (struct macho_segment_command*)cmd;
 // ignore zero-sized segments
 if (segCmd->vmsize != 0) {
 // record offset of load command
 segOffsets[segIndex++] = (uint32_t)((uint8_t*)segCmd - fMachOData);
 }
 }
 cmd = (const struct load_command*)(((char*)cmd)+cmd->cmdsize);
 }

Stefan Esser • death of the vmsize=0 trick - SyScan Bonus Slides • March 2015 •

mapSegments mapping segments

• mapSegments traverses ONLY the cached list of LC_SEGMENT_COMMANDS

• any segment that had a vmsize=0 will never be mapped (because they are not in there)

12

 // map in all segments
 for(unsigned int i=0, e=segmentCount(); i < e; ++i) {
 vm_offset_t fileOffset = segFileOffset(i) + offsetInFat;
 vm_size_t size = segFileSize(i);
 uintptr_t requestedLoadAddress = segPreferredLoadAddress(i) + slide;

 ...

 void* loadAddress = xmmap((void*)requestedLoadAddress, size, protection,
MAP_FIXED | MAP_PRIVATE, fd, fileOffset);
 if (loadAddress == ((void*)(-1))) {
 dyld::throwf("mmap() error %d at address=0x%08lX, size=0x%08lX segment=%s in
Segment::map() mapping %s",
 errno, requestedLoadAddress, (uintptr_t)size, segName(i), getPath());
 }
 }

…
 }

Stefan Esser • death of the vmsize=0 trick - SyScan Bonus Slides • March 2015 •

crashIfInvalidCodeSignature

• because the executable segment with the load commands had vmsize=0  
it is never in the segment list and therefore never touched in here

• therefore there is no crash on invalid code signature

13

int ImageLoaderMachO::crashIfInvalidCodeSignature()
{
 // Now that segments are mapped in, try reading from first executable segment.
 // If code signing is enabled the kernel will validate the code signature
 // when paging in, and kill the process if invalid.
 for(unsigned int i=0; i < fSegmentsCount; ++i) {
 if ((segFileOffset(i) == 0) && (segFileSize(i) != 0)) {
 // return read value to ensure compiler does not optimize away load
 int* p = (int*)segActualLoadAddress(i);
 return *p;
 }
 }
 return 0;
}

Stefan Esser • death of the vmsize=0 trick - SyScan Bonus Slides • March 2015 •

parseLoadCmds

• is called by instantiateFinish

• it should set the fMachOData pointer to the mapped executable segment

• but because our LC segment with vmsize=0 is never in that list this never happens

• this means fMachOData keeps pointing to the stack copy of mach-o header

• there will never be access to an  
executable segment = code signing bypassed = WIN !!!

14

void ImageLoaderMachO::parseLoadCmds()
{
 // now that segments are mapped in, get real fMachOData, fLinkEditBase, and fSlide
 for(unsigned int i=0; i < fSegmentsCount; ++i) {
 ...
 // some segment always starts at beginning of file and contains mach_header and ..
 if ((segFileOffset(i) == 0) && (segFileSize(i) != 0)) {
 fMachOData = (uint8_t*)(segActualLoadAddress(i));
 }
 }

Stefan Esser • death of the vmsize=0 trick - SyScan Bonus Slides • March 2015 •

Conclusion

• it was trivial to bypass the dynamic linkers security checks

• the trick was to give the load command segment a vmsize=0

• Apple accidentally killed that trick by enforcing that vmsize > filesize

• one less way attackers can use to persist on iDevices to surveil you

• while this fix is most probably an accident Apple did good here :)

15

Stefan Esser • death of the vmsize=0 trick - SyScan Bonus Slides • March 2015 •

Questions

?
16

