
iOS development
efficiency at Facebook

Brief history of iOS at Facebook
2011-2016

Best practices for scaling
revision control, branching strategies, development cycle

iOS open source tools/frameworks
brief overview

Applying Facebook development efficiency
at Bellabeat

2011
Web company

2012 - Rebuilding Facebook for iOS

Three20

Scaling up with html5

Rebuilding for speed

System of modules - shared code e.g. for Messenger

Declarative

Component based

Learn once, write anywhere

React native

Recommendations on
branching

- never put feature branches in the remote/origin/trunk
- control access to new features with runtime configuration, not branching

Choose a strategy where one idea is one commit in the
authoritative master/remote version of the repository

Feature branches

- you have to merge
- this strategy generally aggregates risk into a single high-risk merge event at the end

of development
- when you have multiple feature branches, it's impossible to test interactions between

the features until they are merged
- you generally can't A/B test code in feature branches

- replacing old feature
- the chance that this code will impact production before the merge is nearly zero

Cons

Pros

Abandoning feature
branches
- you don’t have to merge
- risk is generally spread out more evenly into a large number of very small risks

created as each commit lands
- you can test interactions between features in development easily
- you can A/B test and do controlled rollouts easily

- if a new feature replaces an older feature, both have to exist in the same codebase for
a while

- you need an effective way to control access to features so they don't launch before
they're ready

Advantages

Tradeoffs

Controlling access to features
Gatekeeper

if is_feature_launched(“like_button”) {
 showLikeButton()
}

- allowing features to have states like "3%" instead of just "on" or "off"
allows you to roll out features gradually and watch for trouble

- if you perform A/B testing, integrating A/B tests with feature rollouts
is probably a natural fit.

- building a control panel where you hit "Save" and all production
servers immediately reflect the change allows you to quickly turn
things off if there are problems

Gatekeeper

Recommendations on
Revision Control

- when one idea is many commits, everything you do is more
complicated because you need to figure out which commits represent
an idea

- release engineering is greatly simplified
- automated testing is greatly simplified
- understanding changes is greatly simplified
- there is no clear value in having checkpoint commits

When projects scale, strategies
which enforce one idea is one
commit are better

review code

host git/svn/mercurial

build with continuous integration

review designs

discuss in internal chat channels

Writing reviewable code

- the smallest a commit can be is a single cohesive idea
- there should be a one-to-one mapping between ideas and commit
- turn large commits into small commits by dividing large problems into smaller

problems
- write sensible commit messages

Title

Summary:
Brief explanation what you have done in this commit

Test plan:
- exhaustive test plan
- - writing down edge cases
- ‘it works’ or ‘it compiles’ is not a good test plan
- error handling, service impact, performance, unit tests, concurrent change

robustness, revert plan, security

Development cycle
“A week of coding can save you an
hour of thinking.”

Two week cycle

- Do not postpone releases to ship features.
- Ship a subset of the feature to meet the release deadline.
- During planning phase - split features into smaller batches.
- When you’re blocked, resolve the problem, ask for help.
- Report progress regularly. And setbacks.

Development cycle

 • Engineer 

 • Dogfooding  

 • gatekeeper 

 • Quick experiments

 • Monitoring metrics

Testing

Speed up your builds

It encourages the creation of small, reusable modules

Add reproducibility to your builds

Better understanding your dependencies

Component Kit

A React-Inspired View Framework for iOS

one-way data flow from immutable models to immutable
components

No need to do any calculations for view layout

Snapshot testing
https://github.com/facebook/ios-snapshot-test-case

It’s straightforward to test logic code, but less obvious
how you should test views

FBSnapshotTestCase

https://github.com/facebook/ios-snapshot-test-case

https://code.facebook.com/projects/ios/

Swift at Bellabeat
transitioning from obj c to swift

far less crashes

far less code

rxSwift

single repo - shared code in modules

Takeaways
switch from pushing feature branches to remote - to
single master/remote branch

create a mechanism that allows you to switch off features

create small reusable modules

keep up with the open source community

most of the problems happen only when your repo hits a specific
velocity

Thank you

