212 lines
5.6 KiB
Plaintext
212 lines
5.6 KiB
Plaintext
|
{
|
|||
|
"cells": [
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 13,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"using FFTW"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 14,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"dft (generic function with 1 method)"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 14,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"function dft(f)\n",
|
|||
|
" if ndims(f) == 1\n",
|
|||
|
" M = length(f)\n",
|
|||
|
" [sum([x * exp(-2im*pi*u * (idx - 1) / M ) for (idx, x) in enumerate(f)]) for u=0:M-1]\n",
|
|||
|
" elseif ndims(f) == 2\n",
|
|||
|
" M, N = size(f)\n",
|
|||
|
" [sum([f[x+1, y+1] * exp(-2im*pi*(u*x/M + v*y/M)) for x=0:M-1, y=0:N-1]) for u=0:M-1, v=0:N-1]\n",
|
|||
|
" else\n",
|
|||
|
" error(\"Wrong dimension\")\n",
|
|||
|
" end\n",
|
|||
|
"end "
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 15,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"fft2d (generic function with 1 method)"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 15,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"function fft1d(array)\n",
|
|||
|
" #= https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm\n",
|
|||
|
" #\n",
|
|||
|
" # Xk = Ek + e^(-2pi*i/N * k) * Ok\n",
|
|||
|
" #\n",
|
|||
|
" # Ek = Event DFT\n",
|
|||
|
" # Ok = Odd DFT\n",
|
|||
|
" #\n",
|
|||
|
" =#\n",
|
|||
|
" N = size(array)[1]\n",
|
|||
|
" if N == 1\n",
|
|||
|
" return array\n",
|
|||
|
" elseif N % 2 != 0\n",
|
|||
|
" error(\"Wrong dimension\")\n",
|
|||
|
" end\n",
|
|||
|
"\n",
|
|||
|
" # people count from zero while julia counts from 1\n",
|
|||
|
" # either way, it should be the same name\n",
|
|||
|
" even = fft1d(array[1:2:end])\n",
|
|||
|
" odd = fft1d(array[2:2:end])\n",
|
|||
|
" w = exp.(-2im * pi / N * [i for i=0:N/2-1])\n",
|
|||
|
" half1 = even .+ (odd .* w)\n",
|
|||
|
" half2 = even .- (odd .* w)\n",
|
|||
|
" vcat(half1,half2)\n",
|
|||
|
"end\n",
|
|||
|
"\n",
|
|||
|
"function fft2d(matrix)\n",
|
|||
|
" if ndims(matrix) != 2\n",
|
|||
|
" error(\"I dont handle other than 2 dimension matrix\")\n",
|
|||
|
" end\n",
|
|||
|
" matrix_fft1 = hcat(fft1d.(eachrow(matrix))...)\n",
|
|||
|
" hcat(fft1d.(eachrow(matrix_fft1))...)\n",
|
|||
|
"end"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 16,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"8-element Array{Complex{Float64},1}:\n",
|
|||
|
" 36.0 + 0.0im \n",
|
|||
|
" -4.0 + 9.65685424949238im \n",
|
|||
|
" -4.0 + 4.0im \n",
|
|||
|
" -4.0 + 1.6568542494923806im\n",
|
|||
|
" -4.0 + 0.0im \n",
|
|||
|
" -4.0 - 1.6568542494923806im\n",
|
|||
|
" -4.0 - 4.0im \n",
|
|||
|
" -4.0 - 9.65685424949238im "
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"8-element Array{Complex{Float64},1}:\n",
|
|||
|
" 36.0 - 0.0im \n",
|
|||
|
" -4.0 + 9.65685424949238im \n",
|
|||
|
" -4.0 + 4.0im \n",
|
|||
|
" -4.0 + 1.6568542494923797im\n",
|
|||
|
" -4.0 + 0.0im \n",
|
|||
|
" -3.9999999999999996 - 1.6568542494923797im\n",
|
|||
|
" -3.9999999999999996 - 4.0im \n",
|
|||
|
" -3.9999999999999987 - 9.65685424949238im "
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"8-element Array{Complex{Float64},1}:\n",
|
|||
|
" 36.0 - 0.0im \n",
|
|||
|
" -4.000000000000003 + 9.65685424949238im \n",
|
|||
|
" -4.000000000000002 + 3.9999999999999982im \n",
|
|||
|
" -4.0 + 1.656854249492386im \n",
|
|||
|
" -4.0 - 3.91886975727153e-15im\n",
|
|||
|
" -4.0000000000000115 - 1.6568542494923912im \n",
|
|||
|
" -4.000000000000018 - 4.000000000000005im \n",
|
|||
|
" -3.9999999999999725 - 9.656854249492369im "
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"2×8 Array{Complex{Float64},2}:\n",
|
|||
|
" 72.0+0.0im -8.0+19.3137im -8.0+8.0im … -8.0-8.0im -8.0-19.3137im\n",
|
|||
|
" 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im "
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"2×8 Array{Complex{Float64},2}:\n",
|
|||
|
" 72.0-0.0im -8.0+19.3137im -8.0+8.0im … -8.0-8.0im -8.0-19.3137im\n",
|
|||
|
" 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im "
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"2×8 Array{Complex{Float64},2}:\n",
|
|||
|
" 72.0-0.0im -8.0-7.83774e-15im … -8.0-3.39081e-13im\n",
|
|||
|
" 0.0-4.40873e-15im 0.0+4.89859e-16im 0.0-1.87804e-13im"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"display(fft(1:8))\n",
|
|||
|
"display(fft1d(1:8))\n",
|
|||
|
"display(dft(1:8))\n",
|
|||
|
"\n",
|
|||
|
"\n",
|
|||
|
"display(fft([[1:8...] [1:8...]]'))\n",
|
|||
|
"display(fft2d([[1:8...] [1:8...]]'))\n",
|
|||
|
"display(dft([[1:8...] [1:8...]]'))\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"metadata": {
|
|||
|
"kernelspec": {
|
|||
|
"display_name": "Julia 1.2.0-DEV",
|
|||
|
"language": "julia",
|
|||
|
"name": "julia-1.2"
|
|||
|
},
|
|||
|
"language_info": {
|
|||
|
"file_extension": ".jl",
|
|||
|
"mimetype": "application/julia",
|
|||
|
"name": "julia",
|
|||
|
"version": "1.2.0"
|
|||
|
}
|
|||
|
},
|
|||
|
"nbformat": 4,
|
|||
|
"nbformat_minor": 2
|
|||
|
}
|