134 lines
3.0 KiB
Python
134 lines
3.0 KiB
Python
|
import cv2 as cv
|
||
|
import numpy as np
|
||
|
from numpy import fft
|
||
|
import matplotlib.pyplot as plt
|
||
|
from scipy import ndimage
|
||
|
from scipy import signal
|
||
|
from scipy import fftpack
|
||
|
|
||
|
def create_histogram(img):
|
||
|
size = img.shape[0]*img.shape[1]
|
||
|
hist = np.zeros(8, dtype=np.float)
|
||
|
for row in range(img.shape[0]):
|
||
|
for col in range(img.shape[1]):
|
||
|
hist[img[row][col]] += 1
|
||
|
return hist/size
|
||
|
|
||
|
def create_sum_histogram(hist):
|
||
|
sum_hist = np.zeros(8,dtype=np.float)
|
||
|
sum_hist[0] = hist[0]
|
||
|
for x in range(1,8):
|
||
|
sum_hist[x] = sum_hist[x-1] + hist[x]
|
||
|
return sum_hist
|
||
|
|
||
|
def dft(signal):
|
||
|
N = len(signal)
|
||
|
x = np.array(range(N))
|
||
|
x = np.tile(x,(N,1))
|
||
|
u = x.copy().T
|
||
|
M = np.exp((-1j*2*np.pi*x*u)/N)
|
||
|
return np.matmul(M,signal)
|
||
|
|
||
|
def show_dft_vector(N):
|
||
|
x = np.array(range(N))
|
||
|
x = np.tile(x,(N,1))
|
||
|
u = x.copy().T
|
||
|
M = np.exp((-1j*2*np.pi*x*u)/N)
|
||
|
print(M)
|
||
|
|
||
|
def dct(signal):
|
||
|
N = len(signal)
|
||
|
x = np.array(range(N))
|
||
|
x = np.tile(x,(N,1))
|
||
|
u = x.copy().T
|
||
|
M = np.cos((2*x+1)*u*np.pi/(2*N))
|
||
|
a1 = [np.sqrt(1/N)]
|
||
|
a2 = np.repeat(np.array([np.sqrt(2/N)]),N-1)
|
||
|
a = np.concatenate((a1,a2),axis = 0)
|
||
|
return np.matmul(M,signal)*a
|
||
|
|
||
|
def show_dct(N):
|
||
|
x = np.array(range(N))
|
||
|
x = np.tile(x,(N,1))
|
||
|
u = x.copy().T
|
||
|
M = np.cos((2*x+1)*u*np.pi/(2*N))
|
||
|
a1 = [np.sqrt(1/N)]
|
||
|
a2 = np.repeat(np.array([np.sqrt(2/N)]),N-1)
|
||
|
a = np.concatenate((a1,a2),axis = 0)
|
||
|
a = np.repeat(a,4)
|
||
|
a = np.reshape(a,(4,4))
|
||
|
return M*a
|
||
|
|
||
|
|
||
|
def bai1():
|
||
|
I = np.array([[5,0,0,1,2],
|
||
|
[2,1,5,1,2],
|
||
|
[7,1,5,1,2],
|
||
|
[7,4,5,4,3],
|
||
|
[7,1,6,1,3]])
|
||
|
Kx = np.array([[-1,0,1],
|
||
|
[-2,0,2],
|
||
|
[-1,0,1]])
|
||
|
Ky = Kx.T
|
||
|
Gx = ndimage.convolve(I,Kx,mode='reflect')
|
||
|
Gy = ndimage.convolve(I,Ky,mode='reflect')
|
||
|
print('Gradient vector at (0,0): (' + str(Gx[0,0]) + ',' + str(Gy[0,0]) +')')
|
||
|
print('Gradient vector at (1,1): (' + str(Gx[1,1]) + ',' + str(Gy[1,1]) +')')
|
||
|
print('Gradient vector at (0,3): (' + str(Gx[0,3]) + ',' + str(Gy[0,3]) +')')
|
||
|
|
||
|
h = create_histogram(I)
|
||
|
plt.plot(h,color = 'b')
|
||
|
plt.xlim([0,7])
|
||
|
plt.show()
|
||
|
sumhist = create_sum_histogram(h)
|
||
|
|
||
|
new_I = I.copy()
|
||
|
for x in range(I.shape[0]):
|
||
|
for y in range(I.shape[1]):
|
||
|
new_I[x][y] = int(np.round(sumhist[I[x][y]]*7))
|
||
|
new_h = create_histogram(new_I)
|
||
|
new_h_sum = create_sum_histogram(new_h)
|
||
|
plt.plot(sumhist,color = 'r')
|
||
|
plt.plot(new_h_sum,color = 'b')
|
||
|
plt.xlim([0,7])
|
||
|
plt.show()
|
||
|
|
||
|
print(new_I)
|
||
|
|
||
|
|
||
|
def bai2():
|
||
|
# a)
|
||
|
print('Cau 2a)')
|
||
|
show_dft_vector(2)
|
||
|
print(dft([1,3]))
|
||
|
# b)
|
||
|
print('Cau b)')
|
||
|
fx = np.array([1,3])
|
||
|
fu = dft(fx)
|
||
|
print(fu)
|
||
|
print('Chung minh truc giao chuan:')
|
||
|
base_vector = show_dct(4)
|
||
|
for v in base_vector:
|
||
|
print(np.sum(v**2))
|
||
|
for x in range(base_vector.shape[0]):
|
||
|
for y in range(x,base_vector.shape[0]):
|
||
|
if x == y:
|
||
|
continue
|
||
|
print(np.dot(base_vector[x],base_vector[y]))
|
||
|
|
||
|
fx = np.array([1,0,1])
|
||
|
fxx = np.array([1,0,1,0])
|
||
|
print(dct(fxx))
|
||
|
|
||
|
|
||
|
def bai3():
|
||
|
A = np.array([[1/np.sqrt(2),-1/np.sqrt(2),3],
|
||
|
[1/np.sqrt(2),1/np.sqrt(2),-3*2**0.5+3],
|
||
|
[0,0,1]])
|
||
|
P1 = np.array([2,3,1])
|
||
|
pixel = np.round(np.matmul(np.linalg.inv(A),P1))
|
||
|
print(pixel)
|
||
|
|
||
|
bai1()
|
||
|
bai2()
|
||
|
bai3()
|