This repository has been archived on 2021-02-05. You can view files and clone it, but cannot push or open issues or pull requests.
ipcv/python_scripts/FTs.py

85 lines
2.2 KiB
Python
Raw Normal View History

2019-05-14 22:37:19 +07:00
import numpy as np
import scipy.ndimage as ndi
import matplotlib.pyplot as plt
def imshow(img, cap=None):
if np.amax(img) > 255:
img = img / (np.amax(img)) * 255
img.astype(np.uint8)
fig = plt.figure(figsize=(4, 4))
if cap is not None:
plt.title(cap)
plt.imshow(img, cmap="gray")
plt.axis("off")
plt.show()
def shift(array):
n = array.shape[0]
t = array[0:int(n / 2), 0:int(n / 2)].copy()
array[0:int(n / 2), 0:int(n / 2)] = array[int(n / 2):n, int(n / 2):n]
array[int(n / 2):n, int(n / 2):n] = t
t = array[0:int(n / 2), int(n / 2):n].copy()
array[0:int(n / 2), int(n / 2):n] = array[int(n / 2):n, 0:int(n / 2)]
array[int(n / 2):n, 0:int(n / 2)] = t
return array
def padding(img):
s = 2**np.ceil(np.log2(np.amax(img.shape))).astype(np.int32)
height = s - img.shape[0]
width = s - img.shape[1]
left = width // 2
right = width - left
top = height // 2
down = height - top
shape_ = [[top, down], [left, right]]
return np.pad(img, shape_, 'constant')
def dft1d(array):
N = array.shape[0]
# (a[x, y], b[x, y]) = (x, y)
a = np.tile(np.arange(0, N), (N, 1))
b = a.copy().T
W = np.exp(-2j * np.pi / N * a * b)
return np.around(np.dot(W, array), 2)
def idft1d(array):
N = array.shape[0]
# (a[x, y], b[x, y]) = (x, y)
a = np.tile(np.arange(0, N), (N, 1))
b = a.copy().T
W = np.exp(2j * np.pi / N * a * b) / N
return np.around(np.dot(W, array), 2)
def fft1d(array):
m = array.shape[0]
if m == 1:
return array
elif m % 2 == 0:
even = fft1d(array[::2])
odd = fft1d(array[1::2])
Wm = np.exp(-2j * np.pi / m * np.arange(int(m / 2)))
half1 = even + odd * Wm
half2 = even - odd * Wm
return np.concatenate([half1, half2])
else:
raise ValueError("Wrong dimension")
def fft(array):
n = array.shape[0]
if np.log2(n) % 1 != 0:
return dft1d(array)
else:
return np.around(fft1d(array), 2)
def fft2d(matrix):
temp = np.array([fft(x) for x in matrix]).T
return np.around(np.array([fft(x) for x in temp]).T, 2)