Image Compression

Instructor LE Thanh Sach, Ph.D. Ltsach@cse.hcmut.edu.vn http://www.cse.hcmut.edu.vn/~ltsach/

Outline

VIntroduction vLossless Compression vLossy Compression

Introduction

- vThe goal of image compression is to reduce the amount of data required to represent a digital image.
- **V**Important for reducing **storage**

Approaches

\cdot Lossless

- @ **Information preserving**
- @ **Low compression ratios**
- @ **e.g., Huffman**

V Lossy

- @ **Does not preserve information**
- @ **High compression ratios**
- @ **e.g., JPEG**

VTradeoff: image quality vs compression ratio

Data *vs* Information

◆ Data and information are not synonymous terms!

 \diamond **Data** is the means by which **information** is conveyed.

◆ Data compression aims to reduce the amount of data required to represent a given quantity of information while preserving as much information as possible.

Data Redundancy

◆ Data redundancy is a mathematically quantifiable entity!

Data Redundancy (cont'd)

$$
\mathbf{\clubsuit Compression ratio:} \ \ c_{R} = \frac{n_{1}}{n_{2}}
$$

Relative data redundancy:

\n
$$
R_D = 1 - \frac{1}{C_R}
$$

\nExample:

If $C_R = \frac{10}{1}$, then $R_D = 1 - \frac{1}{10} = 0.9$ if $n_2 = n_1$, then $C_R = 1$, $R_D = 0$ if $n_2 \ll n_1$, then $C_R \to \infty$, $R_D \to 1$ $(90\% \text{ of the data in dataset 1 is redundant})$ if $n_2 \gg n_1$, then $C_R \to 0$, $R_D \to -\infty$

Types of Data Redundancy

(1) Coding (2) Interpixel (3) Psychovisual

*****The role of compression is to reduce one or more of these redundancy types.

Coding Redundancy

***** Data compression can be achieved using an appropriate encoding scheme.

Example: binary encoding

Encoding Schemes

***** Elements of an encoding scheme:

- @**Code: a list of symbols (letters, numbers, bits etc.)**
- @**Code word: a sequence of symbols used to represent a piece of information or an event (e.g., gray levels)**

@**Code word length: number of symbols in each code word**

Example: (binary code, symbols: 0,1, length: 3)

Definitions

N x M image r_k : k-th gray level $P(r_k)$: probability of r_k Expected value:

$$
E(X) = \sum_{x} xP(X = x)
$$

 $l(r_k)$: # of bits for r_k

 $L-1$ Average # of bits: $L_{avg} = E(l(r_k)) = \sum l(r_k)P(r_k)$ $k=0$

Total # of bits: NML_{avg}

Constant Length Coding

Assume an image with $L = 8$

Assume
$$
l(r_k) = 3
$$
, $L_{avg} = \sum_{k=0}^{7} 3P(r_k) = 3 \sum_{k=0}^{7} P(r_k) = 3$ bits

Total number of bits: 3NM

Avoiding Coding Redundancy

***** To avoid coding redundancy, codes should be selected according to the probabilities of the events.

• **Variable Length Coding** @ **Assign fewer symbols (bits) to the more probable events (e.g., gray levels for images)**

Variable Length Coding

vConsider the probability of the gray levels:

Interpixel redundancy

❖Interpixel redundancy implies that any pixel value can be reasonably predicted by its neighbors (i.e., correlated).

$$
correlation: f(x) \text{ o } g(x) = \int_{-\infty}^{\infty} f^*(a)g(x+a)da
$$

autocorrelation: $g(x) = f(x)$

Figure 6.2 Two images and their gray-level histograms and normalized autocorrelation

Interpixel redundancy (cont'd)

- **V**To reduce interpixel redundnacy, the data must be transformed in another format (i.e., through a transformation)
	- @ **e.g., thresholding, or differences between adjacent pixels, or DFT** Gray level

Run-length encoding:

 $(1,63)$ $(0,87)$ $(1,37)$ $(0,5)$ $(1,4)$ $(0,556)$ $(1,62)$ $(0,210)$

Using 11 bits/pair: $(1+10)$

88 bits are required (compared to 1024!!)

Psychovisual redundancy

- *****Takes into advantage the peculiarities of the human visual system.
- ***** The eye does not respond with equal sensitivity to all visual information.
- ***Humans search for important features (e.g.,** edges, texture, etc.) and do not perform quantitative analysis of every pixel in the image.

Psychovisual redundancy (cont'd) Example: Quantization

i.e., add to each pixel a pseudo-random number prior to quantization

How do we measure information?

 $\mathbf{\hat{\cdot}}$ What is the information content of a message/image?

• What is the minimum amount of data that is sufficient to describe completely an image without loss of information?

Modeling the Information Generation Process

***Assume that information generation process** is a probabilistic process.

***** A random event *E* which occurs with probability $P(E)$ contains:
 $I(E) = log(\frac{1}{P(E)}) = -log(P(E))$ units of information

note that when $P(E) = 1$, then $I(E) = 0$: no information !

How much information does a pixel contain?

***** Suppose that the gray level value of pixels is generated by a random variable, then r_k contains

> $I(r_k) = -log(P(r_k))$ units of information

Average information of an image

Entropy: the average information content of an image 1 $\bar{0}$ (r_k) Pr (r_k) *L* k ^{*l*} \mathbf{L} \mathbf{L} \mathbf{V} k *k* $H = \sum I(r_k) \Pr(r_k)$ − = $=\sum$

using
$$
I(r_k) = -\log(P(r_k))
$$

we have:
$$
H = -\sum_{k=0}^{L-1} P(r_k) log(P(r_k))
$$
 units/pixel

Assumption: statistically independent random events

Advanced Image/Video Processing: Image Compression Slide: 23

Modeling the Information Generation Process (cont'd)

$$
\mathbf{\& Redundanc} \quad R = L_{avg} - H
$$

where:
$$
L_{avg} = E(l(r_k)) = \sum_{k=0}^{L-1} l(r_k)P(r_k)
$$

note that if $L_{avg} = H$, then $R = 0$ - no redundancy

Entropy Estimation

VNot easy!

Advanced Image/Video Processing: Image Compression and Slide: 25 and Slide: 25

Entropy Estimation

V* First order estimate of H:

$$
H = -\sum_{k=0}^{3} P(r_k)log(P(r_k)) = 1.81 \text{ bits/pixel}
$$

Total bits: 4 x 8 x 1.81 = 58 bits

Estimating Entropy (cont'd)

Example 3 Second order estimate of H:

@**Use relative frequencies of pixel blocks :**

 $H = 2.5/2 = 1.25$ bits/pixel

Estimating Entropy (cont'd)

- * Comments on first and second order entropy estimates:
	- @ **The first-order estimate gives only a lower-bound on the compression that can be achieved.**
	- @ **Differences between higher-order estimates of entropy and the first-order estimate indicate the presence of interpixel redundancies.**

Question

***How do we deal with interpixel** redundancy?

Apply a transformation!

Estimating Entropy (cont'd)

VE.g., consider difference image:

Advanced Image/Video Processing: Image Compression and Slide: 30 Slide: 30 Slide: 30

Estimating Entropy (cont'd)

*****Entropy of difference image:

$$
H = -\sum_{k=0}^{2} P(r_k) \log(P(r_k)) = 1.41 \text{ bits/pixel}
$$

• Better than before (i.e., H=1.81 for original image), however, a better transformation could be found:

1.41 bits/pixel > 1.25 bits/pixel (from 2nd order estimate of H)

Image Compression Model (cont'd)

 \diamond **Mapper:** transforms the input data into a format that facilitates reduction of interpixel redundancies.

Image Compression Model (cont'd)

Vometa Quantizer: reduces the accuracy of the mapper's output in accordance with some pre-established fidelity criteria.

Image Compression Model (cont'd)

❖ **Symbol encoder:** assigns the shortest code to the most frequently occurring output values.

Image Compression Models (cont'd)

 \triangle The inverse operations are performed.

V But ... quantization is irreversible in general.
Fidelity Criteria

 $\mathbf{\hat{v}}$ How close is $f(x, y)$ to $\hat{f}(x, y)$?

<u> Criteria</u> @**Subjective: based on human observers** @**Objective: mathematically defined criteria**

Advanced Image/Video Processing: Image Compression Slide: 37 Slide: 37

Subjective Fidelity Criteria

Objective Fidelity Criteria

* Root mean square error (RMS)

$$
e_{rms} = \sqrt{\frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} (\hat{f}(x, y) - f(x, y))^2}
$$

vMean-square signal-to-noise ratio (SNR)

$$
SNR_{ms} = \frac{\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} (\hat{f}(x, y))^2}{\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} (\hat{f}(x, y) - f(x, y))^2}
$$

Example

Lossless Compression

$$
e(x, y) = \hat{f}(x, y) - f(x, y) = 0
$$

- Huffman, Golomb, Arithmetic \rightarrow coding redundancy
- LZW, Run-length, Symbol-based, Bit-plane \rightarrow interpixel redundancy

Huffman Coding (i.e., removes coding redundancy)

- \triangleleft It is a variable-length coding technique.
- **Vo**•It creates the *optimal code* for a set of source symbols.
- ❖ Assumption: symbols are encoded one at a time!

v**Optimal code:** minimizes the number of code symbols per source symbol.

• *Forward Pass*

- 1. Sort probabilities per symbol
- 2. Combine the lowest two probabilities
- 3. Repeat *Step2* until only two

probabilities remain.

v*Backward Pass*

Assign code symbols going backwards

\mathbf{L}_{avg} using Huffman coding:

$$
L_{avg} = E(l(a_k)) = \sum_{k=1}^{6} l(a_k)P(a_k) =
$$

 $3x0.1 + 1x0.4 + 5x0.06 + 4x0.1 + 5x0.04 + 2x0.3 = 2.2 \text{ bits/symbol}$

\mathcal{L}_{avg} assuming binary codes:
6 symbols, we need a 3-bit code

 $(a_1: 000, a_2: 001, a_3: 010, a_4: 011, a_5: 100, a_6: 101)$

$$
L_{avg} = \sum_{k=1}^{6} l(a_k)P(a_k) = \sum_{k=1}^{6} 3P(a_k)=3 \sum_{k=1}^{6} P(a_k) = 3 \text{ bits/symbol}
$$

\triangle Comments

@**After the code has been created, coding/decoding can be implemented using a look-up table.**

@**Decoding can be done in an unambiguous way !!**

$$
\underbrace{0 1 0 1 0}_{a_3} \underbrace{0 1 1}_{a_1} \underbrace{1 1 0}_{a_2 a_2} \underbrace{0}_{a_6}
$$

Arithmetic (or Range) Coding (i.e., removes coding redundancy)

- ◆ No assumption on encoding symbols one at a time. @ **No one-to-one correspondence between source and code words.**
- ❖ Slower than Huffman coding but typically achieves better compression.
- \triangle A sequence of source symbols is assigned a single arithmetic code word which corresponds to a sub-interval in $[0,1]$

- *As the number of symbols in the message increases, the interval used to represent it becomes smaller.
	- @**Each symbol reduces the size of the interval according to its probability.**
- ***** Smaller intervals require more information units (i.e., bits) to be represented.

Encode message: a_1 a_2 a_3 a_4

1) Assume message occupies [0, 1)

3) Update interval by processing source symbols

 $[0.8, 1.0)$

Example

Advanced Image/Video Processing: Image Compression and Slide: Southern Research Compression and Slide: 50

Example

- The message a_1 a_2 a_3 a_4 is encoded using 3 decimal digits or 0.6 decimal digits per source symbol.
- The entropy of this message is:
- $-(3 \times 0.2 \log_{10}(0.2) + 0.4 \log_{10}(0.4)) = 0.5786$ digits/symbol

Note: Finite precision arithmetic might cause problems due to truncations!

- \triangle Encode
	- \approx **Low = 0**
	- @ **High = 1**

@ **Loop. For all the symbols.**

- \checkmark Range = high low
- \checkmark High = low + range $*$ high_range of the symbol being coded
- V Low = low + range $*$ low_range of the symbol being coded
- **☆** Where:
	- @ **Range, keeps track of where the next range should be.**
	- @ **High and low, specify the output number.**

\bigcirc Decode

@**Loop. For all the symbols.**

- \sqrt{R} ange = high_range of the symbol low_range of the symbol
- \checkmark Number = number low_range of the symbol
- \checkmark Number = number / range

LZW Coding (i.e., removes inter-pixel redundancy)

- * Requires no priori knowledge of probability distribution of pixels
- **V**Assigns fixed length code words to variable length sequences
- **V** Patented Algorithm US 4,558,302
- ❖ Included in GIF and TIFF and PDF file formats

LZW Coding

* A codebook or a dictionary has to be constructed. @ **Single pixel values and blocks of pixel values**

- \triangle For an 8-bit image, the first 256 entries are assigned to the gray levels 0,1,2,..,255.
- ❖ As the encoder examines image pixels, gray level sequences (i.e., pixel combinations) that are not in the dictionary are assigned to a new entry.

Example

Consider the following 4 x 4 8 bit image

- 39 39 126 126
- 39 39 126 126
- 39 39 126 126
- 39 39 126 126

Initial Dictionary

Example

- 39 39 126 126
- 39 39 126 126
- 39 39 126 126
- 39 39 126 126

- Is 39 in the dictionary……..Yes
- What about 39-39………….No
- Then add 39-39 in entry 256

Advanced Image/Video Processing: Image Compression Slide: 60 Slide: 60

concatenated sequence (CS)

If CS is found: (1) No Output (2) CR=CS

If CS not found: (1) Output D(CR) (2) Add CS to D (3) CR=P

Example

Decoding LZW

• The dictionary which was used for encoding need not be sent with the image.

• A separate dictionary is built by the decoder, on the "fly", as it reads the received code words.

Run-length coding (RLC) (i.e., removes interpixel redunancy)

 $\mathbf{\hat{v}}$ Used to reduce the size of a repeating string of characters (i.e., runs)

a a a b b b b b c c \rightarrow (a,3) (b, 6) (c, 2)

- v Encodes a run of symbols into two bytes , a count and a symbol.
- ❖ Can compress any type of data but cannot achieve high compression ratios compared to other compression methods.

Run-length coding (i.e., removes interpixel redunancy)

 \mathcal{L} Code each contiguous group of 0's and 1's, encountered in a left to right scan of a row, by its length.

 $1 1 1 1 1 0 0 0 0 0 0 1 \rightarrow (1,5) (0, 6)$ $(1, 1)$

Bit-plane coding (i.e., removes interpixel redundancy)

- ◆ An effective technique to reduce inter pixel redundancy is to process each bit plane individually
- $\cdot \cdot$ The image is decomposed into a series of binary images.
- ◆ Each binary image is compressed using one of well known binary compression techniques.

@ **e.g., Huffman, Run-length, etc.**

Combining Huffman Coding with Run-length Coding

Vonce a message has been encoded using Huffman coding, additional compression can be achieved by encoding the lengths of the runs using variable-length coding!

010100111100

e.g., $(0,1)(1,1)(0,1)(1,1)(0,2)(1,4)(0,2)$

Lossy Compression

- ❖ Transform the image into a domain where compression can be performed more efficiently.
- \lozenge Note that the transformation itself does not compress the image!

Advanced Image/Video Processing: Image Compression and Slide: 67 Slide: 67

Lossy Compression (cont'd)

Transform Selection

$$
f(x, y) = \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} T(u, v) h(x, y, u, v)
$$

- $\mathbf{\hat{v}}$ T(u,v) can be computed using various transformations, for example: @**DFT** @**DCT (Discrete Cosine Transform)**
	- @**KLT (Karhunen-Loeve Transformation)**

DCT

forward

$$
C(u, v) = \alpha(u)\alpha(v) \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x, y) \cos(\frac{(2x+1)u\pi}{2N}) \cos(\frac{(2y+1)v\pi}{2N}),
$$

 $u, v=0,1,...,N-1$

inverse

$$
f(x, y) = \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} \alpha(u)\alpha(v)C(u, v)cos(\frac{(2x+1)u\pi}{2N})cos(\frac{(2y+1)v\pi}{2N}),
$$

 $x, y=0,1,...,N-1$

$$
\alpha(u) = \begin{cases} \sqrt{1/N} & \text{if } u=0\\ \sqrt{2/N} & \text{if } u>0 \end{cases} \quad \alpha(v) = \begin{cases} \sqrt{1/N} & \text{if } v=0\\ \sqrt{2/N} & \text{if } v>0 \end{cases}
$$

DCT (cont'd)

*****Basis set of functions for a 4x4 image (i.e.,cosines of different frequencies).

DCT (cont'd)

8 x 8 subimages

64 coefficients per subimage

50% of the coefficients truncated

Advanced Image/Video Processing: Image Compression and Slide: 72 Slide: 72
DCT (cont'd)

*DCT minimizes "blocking artifacts" (i.e., boundaries between subimages do not become very visible).

i.e., n-point periodicity gives rise to discontinuities!

DCT i.e., 2n-point periodicity prevents discontinuities!

DCT (cont'd)

vSubimage size selection

Advanced Image/Video Processing: Image Compression and Slide: 74 Slide: 74

JPEG Compression

◆JPEG uses DCT for handling interpixel redundancy.

VModes of operation:

- (1) Sequential DCT-based encoding
- (2) Progressive DCT-based encoding
- (3) Lossless encoding
- (4) Hierarchical encoding

JPEG Compression (Sequential DCT-based encoding)

Advanced Image/Video Processing: Image Compression Slide: 76 and Slide: 76

JPEG Steps

- 1. Divide the image into 8x8 subimages; For each subimage do:
- 2. Shift the gray-levels in the range [-128, 127]
- 3. Apply DCT (64 coefficients will be obtained: 1 DC coefficient $F(0,0)$, 63 AC coefficients $F(u,v)$).
- 4. Quantize the coefficients (i.e., reduce the amplitude of coefficients that do not contribute a lot).

$$
C_q(u, v) = Round[\frac{C(u, v)}{Q(u, v)}]
$$
Quantization Table

JPEG Steps (cont'd)

5. Order the coefficients using zig-zag ordering

- Place non-zero coefficients first
- Create long runs of zeros (i.e., good for run-length encoding)
- See next slide
- 6. Encode coefficients.

DC coefficients are encoded using predictive encoding

All coefficients are converted to a binary sequence:

6.1 Form intermediate symbol sequence

6.2 Apply Huffman (or arithmetic) coding (i.e., entropy coding)

JPEG Steps (cont'd)

v AC coefficients are arranged into a zig-zag sequence:

Shifting and DCT

(non-centered spectrum)

Quantization

V•Quantization Table Example

Quantization (cont'd)

Advanced Image/Video Processing: Image Compression Slide: 82

Zig-Zag Ordering (cont'd)

Advanced Image/Video Processing: Image Compression Slide: 83 Slide: 83

Intermediate Coding (cont'd)

 $DC (6) (61)$

 $AC \t(0,2) \t(-3)$

End of Block

If RUN-LENGTH > 15 , then symbol (15,0) means RUN-LENGTH=16

Advanced Image/Video Processing: Image Compression Slide: 85 Slide: 85

Entropy Encoding (cont'd)

End of Block

See Table 8.17-8.19, page 500, 501, 501

Entropy Encoding

Symbol_1 Symbol_1
(Variable Length Code (VLC)) **Symbol_2**
(Variable Length Code (VLC)

(Variable Length Integer (VLI))

See Table 8.17-8.19, page 500, 501, 501 *VLC* **VLI**

 $(1,2)(12) \rightarrow (110111100)$

EQUIVAL ARMITECTIVE

Advanced Image/Video Processing: Image Compression and Slide: 87 Slide: 87

JPEG Examples

worst quality,

highest compression

best quality,

lowest compression

Results

Table 6. Results of JPEG Compression for Grayscale Image 'Lisa' (320 ×240 pixels)

Advanced Image/Video Processing: Image Compression Slide: 89

Progressive JPEG

*****The image is encoded in multiple scans, in order to produce a quick, rough decoded image when transmission time is long.

VEach scan, codes a subset of DCT coefficients.

V•Let's look at three methods:

(1) Progressive spectral selection algorithm (2) Progressive successive approximation algorithm (3) Combined progressive algorithm

(1) Progressive spectral selection algorithm @**Group DCT coefficients into several spectral bands** @**Send low-frequency DCT coefficients first** @**Send higher-frequency DCT coefficients next**

> Band 1: DC coefficient only Band 2: AC_1 and AC_2 coefficients Band 3: AC_3 , AC_4 , AC_5 , AC_6 , coefficients Band 4: $AC_7...AC_{63}$, coefficients

(2) Progressive successive approximation algorithm

EXALLET COEFFICIENTS Are sent first with lower precision

@**Refine them in later scans**

Band 1: All DCT coefficients (divided by four) Band 2: All DCT coefficients (divided by two) Band 3: All DCT coefficients (full resolution)

(3) Combined progressive algorithm @**Combines spectral selection and successive approximation.**

Results using spectral selection

	Spectral selection
Scan 1	DC, AC1, AC2
Scan 2	$AC3-AC9$
Scan 3	AC10-AC35
Scan 4	AC 36-AC 63

Table 8. Progressive spectral selection JPEG. (Image 'Cheetah': 320×240 pixels $-$ > 512,000 bits)

Results using successive approximation

Successive

sonnosimstion.

Table 9. Progressive successive approximation JPEG. (Image 'Cheetah': 320×240 pixels $-$ > 512,000 bits)

Example using successive approximation
after 0.9s after 1.6

after 3.6s after 7.0s

after 1.6s

Advanced Image/Video Processing: Image Compression Slide: 97 Slide: 97

Lossless JPEG

Use a predictive algorithm instead of DCT-based

Advanced Image/Video Processing: Image Compression Slide: 98 Slide: 98

Fingerprint Compression

→ An image coding standard for digitized fingerprints, developed and maintained by: @ **FBI**

- @ **Los Alamos National Lab (LANL)**
- @ **National Institute for Standards and Technology (NIST).**
- \triangle The standard employs a discrete wavelet transform-based algorithm (*Wavelet/Scalar Quantization or WSQ)*.

Memory Requirements

- ***FBI** is digitizing fingerprints at 500 dots per inch with 8 bits of grayscale resolution.
- $\triangle A$ single fingerprint card turns into about 10 MB of data!

A sample fingerprint image 768 x 768 pixels =589,824 bytes

Preserving Fingerprint Details

The "white" spots in the middle of the black ridges are *sweat pores*

They're admissible points of identification in court, as are the little black flesh ''islands'' in the grooves between the ridges

These details are just a couple pixels wide!

What compression scheme should be used?

*****Better use a lossless method to preserve every pixel perfectly.

***** Unfortunately, in practice lossless methods haven't done better than 2:1 on fingerprints!

***Does JPEG work well for fingerprint** compression?

Results using JPEG compression

file size 45853 bytes compression ratio: 12.9

The fine details are pretty much history, and the whole image has this artificial ''blocky'' pattern superimposed on it.

The **blocking artifacts** affect the performance of manual or automated systems!

Results using WSQ compression

file size 45621 bytes compression ratio: 12.9

The fine details are preserved better than they are with JPEG.

NO blocking artifacts!

WSQ Algorithm

Varying compression ratio

***FBI's target bit rate is around 0.75 bits per** pixel (bpp)

@**i.e., corresponds to a target compression ratio of 10.7 (assuming 8-bit images)**

vThis target bit rate is set via a ''knob'' on the WSQ algorithm.

Example 2 i.e., similar to the "quality" parameter in many JPEG implementations.

Varying compression ratio (cont'd)

 \cdot In practice, the WSQ algorithm yields a higher compression ratio than the target because of unpredictable amounts of lossless entropy coding gain.

@**i.e., mostly due to variable amounts of blank space in the images.**

***** Fingerprints coded with WSQ at a target of 0.75 bpp will actually come in around 15:1

Varying compression ratio (cont'd)

Original image 768 x 768 pixels (589824 bytes)

Varying compression ratio (cont'd) 0.9 bpp compression

WSQ image, file size 47619 bytes, compression ratio 12.4

JPEG image, file size 49658 bytes, compression ratio 11.9

Varying compression ratio (cont'd) 0.75 bpp compression

WSQ image, file size 39270 bytes compression ratio 15.0

JPEG image, file size 40780 bytes, compression ratio 14.5

Varying compression ratio (cont'd) 0.6 bpp compression

WSQ image, file size 30987 bytes, compression ratio 19.0

JPEG image, file size 30081 bytes, compression ratio 19.6

