LE Thanh Sach

Chapter 7.1 Edge Detection

Image Processing and Computer Vision

Point Detection Line Detection Edge Detection Laplacian of Gaussian (LoG)

LE Thanh Sach Faculty of Computer Science and Engineering Ho Chi Minh University of Technology, VNU-HCM **Overview**

1 Point Detection

2 Line Detection

3 Edge Detection

4 Laplacian of Gaussian (LoG)

Edge Detection

LE Thanh Sach

Point Detection

- **1** Filter the input image f(x, y) with Laplacian H_{lap} , i.e., compute $g(x, y) = f(x, y) * H_{lap}(i, j)$
- **2** Detect isolated points (x, y) if they satisfy: $|g(x, y)| \ge T$. Where, T is a threshold value.

Laplacian kernel H_{lap} :

$$H_{lap} = \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Edge Detection

LE Thanh Sach

Line Detection

- 1 Filter the input image f(x, y) with all following masks for detecting horizontal, vertical, $\pm 45^{0}$ -oriented lines. This process results $g_{i}(x, y), i = 1..4$. You can design new masks for other lines with new orientation.
- 2 Chose a orientation i for point (x, y) by selecting the largest $g_i(x, y), i = 1..4$.
- **3** Do thresholding with a certain T (input) to obtain lines.

Some kernels:

$$\begin{bmatrix}
-1 & -1 & -1 \\
2 & 2 & 2 \\
-1 & -1 & -1
\end{bmatrix}
\begin{bmatrix}
-1 & 2 & -1 \\
-1 & 2 & -1 \\
-1 & 2 & -1
\end{bmatrix}$$
Horizontal
Vertical
$$\begin{bmatrix}
-1 & -1 & 2 \\
-1 & 2 & -1 \\
2 & -1 & -1
\end{bmatrix}
\begin{bmatrix}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{bmatrix}$$

$$+45^{0} \qquad -45^{0}$$

Edge Detection

LE Thanh Sach

Definition

Edge is a set of connected pixels that lie on the boundary between two regions.

Properties

- **1** There is "meaningful" transitions in gray-levels at edge.
- 2 So, first-order and second-order derivatives can be used to detect the transition.

Edge Detection

LE Thanh Sach

Point Detection Line Detection Edge Detection

Laplacian of Gaussian (LoG)

Examples of Derivatives: image, a line profile, first and second-order derivatives.

Edge Detection

LE Thanh Sach

Model of edges:

- Left: Clear edge or Ideal edge, ideally represented as a step
- 2 Middle: Blurred edge, ideally represented as a ramp
- Right: A blurred bright edge, ideally represented as a roof.

Edge Detection

LE Thanh Sach

Point Detection Line Detection Edge Detection Laplacian of

Laplacian of Gaussian (LoG)

Edge Detection

Edge with first-order derivatives

Edge consists of points where the module of the gradient vector is greater than a threshold.

• The gradient vector is **perpendicular** with the local edge passing that point

Edge Detection

Edge with second-order derivatives

Edge consists of **zero-crossing points** in image filtered with second-order derivatives.

 Second-order derivatives create one positive response and another negative one for ramp edges.

Edge Detection with noise

Edge Detection

LE Thanh Sach

Point Detection Line Detection Edge Detection

Laplacian of Gaussian (LoG)

- Rows: Row 1: no noise; Row 2: with Gaussian noise $(\mu = 0, \sigma = 0)$
- Cols: Col 1: a line profile; Col 2: Fist-order derivative; Col 3: Second-order derivative

Edge Detection with noise

Edge Detection

LE Thanh Sach

Point Detection Line Detection Edge Detection Laplacian of

Laplacian of Gaussian (LoG)

- Rows: Row 1: with Gaussian noise ($\mu = 0, \sigma = 0.1$); Row 2: with Gaussian noise ($\mu = 0, \sigma = 1.0$)
- Cols: Col 1: a line profile; Col 2: Fist-order derivative; Col 3: Second-order derivative

Edge Detection with noise

Edge Detection

LE Thanh Sach

Point Detection Line Detection Edge Detection

Laplacian of Gaussian (LoG)

Properties

- Second-order derivative is more **sensitive to noise** compared with first-order derivative.
- However,
 - First-order derivatives provide thick edges
 - Second-order derivatives provide thin edges (via, zero-crossing)

Edge Detection and Laplacian

Question

Laplacian can provide the discontinuity in gray-levels. Why is it not used in edge detection?

Reasons

- As a second-order derivative, it is unacceptably sensitive to noise
- 2 The magnitude of Laplacian provides double edges (one for positive and another one for negative response)
- 3 Laplacian can not provide edge direction

Therefore, Laplacian is directly suitable for sharpening images only.

Edge Detection

LE Thanh Sach

Point Detection Line Detection Edge Detection

Laplacian of Gaussian (LoG)

Edge Detection and Laplacian

- Laplacian can provide thin edges via zeros-crossing detection. However, it is sensitive to noise.
- What will be happened if we remove noise before taking Laplician and then finding zeros-crossing?

Laplacian in edge detection

- Perform noise removal will a Gaussian low-pass filter. The input image will be blurred.
- 2 Apply Laplacian to the resulting image.
- **3** Detect zero-crossing points to obtain edge points.

Laplacian of Gaussian (LoG)

Step 1 and 2 in the above algorithm is equivalent to filtering image with a LoG mask

Edge Detection

LE Thanh Sach

Point Detection Line Detection Edge Detection

Laplacian of Gaussian (LoG)

A Gaussian function G(x, y)

$$G(x,y) = e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

• σ : standard deviation. This parameter decides the degree of blurring in output image, if the input image is convoluted with this function

Edge Detection

LE Thanh Sach

Laplacian of Gaussian (LoG)

$$\nabla^2 G(r) = \left[\frac{x^2 + y^2 - 2\sigma^2}{\sigma^4}\right] e^{-\frac{r^2}{2\sigma^2}}$$

• LoG \equiv Laplacian of function G(x,y)

• LoG
$$\equiv \frac{\partial^2 G(x,y)}{\partial x^2} + \frac{\partial^2 G(x,y)}{\partial y^2}$$

Edge Detection

LE Thanh Sach

Line Detection Edge Detection Laplacian of Gaussian (LoG)

Edge Detection

LE Thanh Sach

0	0	-1	0	0
0	-1	-2	-1	0
-1	-2	16	-2	-1
0	-1	-2	-1	0
0	0	-1	0	0

Properties

- 1 Other name: Mexican hat, because of its shape
- **2** Zero-crossing point in LoG: $x^2 + y^2 = 2\sigma^2$
- **3** Radius from the origin to zero-crossing point: $r = \sqrt{2}\sigma$
- ④ Kernel of LoG given above: just an example. It can be approximated by any size and any coefficients.
- **5** Sum of all coefficients of the kernel must be 0

Generation of LoG's kernel

How can you generate LoG's kernel?

Edge Detection

LE Thanh Sach

Edge Detection

LE Thanh Sach

Point Detection Line Detection Edge Detection Laplacian of Gaussian (LoG)

Properties: Linearity

$$\begin{split} g(x,y) &= \left[\nabla^2 G(x,y) \right] * f(x,y) \\ &= \nabla^2 \left[G(x,y) * f(x,y) \right] \end{split}$$

Marr-Hildreth Algorithm

Marr-Hildreth Algorithm

- **1** Filter the input image f(x, y) with Gaussian low-pass filter by kernel size $n \times n$ to obtain the output g(x, y).
- **2** Compute Laplacian of g(x, y) to obtain $g_L(x, y)$
- **3** Find zero-crossing points in $g_L(x,y)$

LoG

Step 1 and 2 can be implemented as applying LoG on the input image.

Edge Detection

LE Thanh Sach

Point Detection Line Detection Edge Detection

Marr-Hildreth Algorithm

Power of Marr-Hildreth Algorithm

Marr-Hildreth Algorithm can remedy the following problems in edge detection:

- **1** Intensity changes are not independent of image scale \Rightarrow use different kernel' size.
- e Edges are sensitive to noise, especially true for second-order derivative ⇒ use Gaussian low-pass filter

Questions

- 1 How can you obtain the kernel's size?
- 2 How can you detect zero-crossing points?

Edge Detection

LE Thanh Sach

LE Thanh Sach

Point Detection Line Detection Edge Detection Laplacian of

How can you obtain the kernel's size?

- Volume of a Gaussian function inside of circle $radius = 3\sigma$ is 99.7%
- \Rightarrow Kernel size $n \times n$, where n an odd numer $\geq 6\sigma$

Marr-Hildreth Algorithm

How can you detect zero-crossing points?

 $\begin{array}{l} \textbf{Perform thresholding of the magnitude of LoG image,}\\ \text{i.e. } |g_l(x,y)|, \text{ with a value } T.\\ g_l(x,y) = \begin{cases} -1 & \text{if } (g_l(x,y) < 0) \text{ and } |g_l(x,y)| > T\\ 1 & \text{if } (g_l(x,y) > 0) \text{ and } |g_l(x,y)| > T\\ 0 & \text{ortherwise} \end{cases} \end{array}$

2 Apply a mask 3×3 at each pixel on $g_l(x, y)$.

NW	Ν	NE	
W	С	Е	
SW	S	SE	

- Obtect the difference on the sign at opposing corners, i.e., (W, E), (N, S), (NW, SE), and (SW, NE).
- **④** If any pair of corners results a difference on the sign, then $g_l(x, y)$ is an edge point.

Edge Detection

LE Thanh Sach

Edge Detection

LE Thanh Sach

Point Detection Line Detection Edge Detection Laplacian of Gaussian (LoG)

Figure: Original image

Edge Detection

LE Thanh Sach

Point Detection Line Detection Edge Detection Laplacian of Gaussian (LoG)

Figure: Original image

Edge Detection

LE Thanh Sach

BK

Point Detection Line Detection Edge Detection Laplacian of

(a)

Figure: Marr-Hildreth Algorithm: (a): Result of Step 1 and 2, (b): Zero-crossing of (a), Threshold = 0

• Step 1 and 2: $\sigma = 4, n = 25$ (kernel's size: 25×25)

• Low threshold \Rightarrow many edge points.

Edge Detection

LE Thanh Sach

Point Detection Line Detection Edge Detection Laplacian of Gaussian (LoG)

Figure: Marr-Hildreth Algorithm: (a): Result of Step 1 and 2, (b): Zero-crossing of (a), Threshold = 4% of maximum value in (a)

- Step 1 and 2: $\sigma = 4, n = 25$ (kernel's size: 25×25)
- Larger threshold \Rightarrow provide strong edge only

Canny Edge Detection Algorithm

- 1 Smooth the input image with Gaussian low-pass filter
- 2 Compute the gradient magnitude angle images
- Apply nonmaxima suppression to the gradient magnitude image.
- Use double thresholding and connectivity analysis to detect and link edges

Edge Detection

LE Thanh Sach

Point Detection Line Detection Edge Detection

Step 1: Smooth the input image with Gaussian low-pass filter

- 1 Smooth the input image with Gaussian low-pass filter
- 2 Compute the gradient magnitude angle images
- Apply nonmaxima suppression to the gradient magnitude image.
- Use double thresholding to obtain strong and weak edge masks
- **5** Analyze the connectivity to detect and link edges

Edge Detection

LE Thanh Sach

Step 1: Smooth the input image with Gaussian low-pass filter

$$G(x,y) = e^{-\frac{x^2 + y^2}{2\sigma^2}}$$
$$f_s(x,y) = f(x,y) * G(x,y)$$

- $f_s(\boldsymbol{x},\boldsymbol{y})$: a smoothed version of $f(\boldsymbol{x},\boldsymbol{y})$
- σ : decides the degree of smoothing
- $f_s(x,y)$: Gaussian noise has been removed

Edge Detection

LE Thanh Sach

Step 2: Compute the gradient magnitude angle images

• Compute $g_x(x,y)$ and $g_y(x,y)$

$$g_x(x,y) = f_s(x,y) * H_x(x,y)$$

$$g_y(x,y) = f_s(x,y) * H_y(x,y)$$

- $H_x(x,y)$, $H_y(x,y)$: any first-order derivative kernels, e.g., "standard" approximations kernels, Sobel, Roberts, Prewitts, etc.
- Compute gradient magnitude and angle images

$$M(x,y) = \begin{bmatrix} g_x(x,y) \\ g_y(x,y) \end{bmatrix}$$
$$\alpha(x,y) = tan^{-1} \begin{bmatrix} g_y(x,y) \\ g_x(x,y) \end{bmatrix}$$

Edge Detection

LE Thanh Sach

Step 3: Apply nonmaxima suppression to the gradient magnitude image.

The underlying idea of nonmaxima suprression

if a point is not a local maxima, then supress (remove, stop, etc) it.

- Edges will pass points that are local maxima in gradient magnitude image, ie., M(x, y).
- \Rightarrow Remove (supress) points that are not local maxima.
- = nonmaxima suprression

LE Thanh Sach

Point Detection Line Detection Edge Detection

Step 3: Apply nonmaxima suppression to the gradient magnitude image.

Questions

What does **local** mean?

- **local** \equiv local points involving in edge.
- for a point (x, y) in M(x, y), which neighbor points are edge local points?
- \Rightarrow need gradient angle

Gradient vector at a point is **perpendicular** to local edge at that point.

Edge Detection

LE Thanh Sach

Point Detection Line Detection Edge Detection Laplacian of

Gaussian (LoG)

Step 3: Apply nonmaxima suppression to the gradient magnitude image.

- 1 Discrete gradient angle values into small rangles.
- **2** Find direction d_k that is closest to $\alpha(x, y)$
- 3 Find local neighbors on edge using d_k , referred to as N_1 and N_2
- **4** Compute nonmaxima suppressed image $g_N(x,y)$

 $g_N(x,y) = \begin{cases} 0 & \text{if } \left[M(x,y) < N_1\right] \& \left[M(x,y) < N_2\right] \\ M(x,y) & \text{otherwise} \end{cases}$

Edge Detection

LE Thanh Sach

Step 3: Apply nonmaxima suppression to the gradient magnitude image.

Edge Detection

LE Thanh Sach

Point Detection Line Detection Edge Detection

Figure: Demonstration for 4 directions: horizontal, vertical, $\pm 45^{0}$

Step 4: Use double thresholding to obtain strong and weak edge masks

1 Do thresholding with high and low threshold value T_H and T_L respectively.

$$g_{NH}(x,y) = g_N(x,y) \ge T_H$$

$$g_{NL}(x,y) = g_N(x,y) \ge T_L$$

Edge Detection

LE Thanh Sach

Point Detection Line Detection Edge Detection Laplacian of Gaussian (LoG)

2 Eliminate points in $g_{NL}(x, y)$ that has been indicated in $g_{NH(x,y)}$

$$g_{NL}(x,y) = g_{NL}(x,y) - g_{NH}(x,y)$$

- $g_{NH}(x,y)$: strong edge
- $g_{NL}(x,y)$: weak edge

Step 5: Analyze connectivity and to detect and link edges

- **1** Create an edge map that marks all non-zeros in $g_{NH}(x, y)$ as valid edge points.
- **2** For each pixel p that is non-zeros in $g_{NH}(x,y)$, do
 - Find all non-zeros pixels in g_{NL}(x, y) that are connected to p via 4- or 8-connectivity, mark corresponding points in edge map as valid pixels.

- edge map may contain edges thicker than 1 pixel.
- Apply edge-thinning algorithm to create thinner edge map, if needed.

Edge Detection

LE Thanh Sach

Canny Edge Detection: Illustration

Edge Detection

LE Thanh Sach

Point Detection Line Detection Edge Detection

Figure: Edge detection (a): Original image, (b): Thresholded gradient magnitude image - **thick edge**

Canny Edge Detection: Illustration

Edge Detection

LE Thanh Sach

Figure: Edge detection (a): Marr-Hildreth Method, (b): Canny method - **better**