[Hough Transforms](#page-85-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0) [Principle](#page-7-0) [Straight Lines](#page-12-0) [Circles](#page-36-0)

[General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

[Generalized Hough](#page-64-0) Transforms (GHT) [GHT with Scaling and](#page-78-0) Rotation

Chapter 7.1 Hough Transforms

Image Processing and Computer Vision

LE Thanh Sach

Faculty of Computer Science and Engineering Ho Chi Minh University of Technology, VNU-HCM

Overview

1 [What is it?](#page-2-0)

2 [Analytic Shape](#page-7-0)

[Principle](#page-7-0) [Straight Lines](#page-12-0) [Circles](#page-36-0) [General Curves](#page-52-0)

3 [Non-Analytic Shape](#page-56-0)

[A Special Case](#page-56-0) [Generalized Hough Transforms \(GHT\)](#page-64-0) [GHT with Scaling and Rotation](#page-78-0)

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0)

[Principle](#page-7-0) [Straight Lines](#page-12-0) [Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

Hough transforms is a method for locating objects in input images.

Questions

Q1: How do we specify objects being located?

Q2: Which information in the input image does Hough Transforms need?

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0) [Principle](#page-7-0) [Straight Lines](#page-12-0) [Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

Q1: How do we specify objects being located?

The objects can be expressed by one of the followings.

1 Analytic Form: The objects are represented by mathematical relations, for examples,

Straight line: $y = ax + b$
Circle: $(x - a)^2 + (y - b)^2 = r^2$
Ellipse: $\left(\frac{x - x_c}{a}\right)^2 + \left(\frac{y - y_c}{b}\right)^2 = 1$
General form: $f(\mathbf{x}, \mathbf{a}) = 0$

• x, a : vector of variables and parameters respectively.

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0) [Principle](#page-7-0) [Straight Lines](#page-12-0) [Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

2 Non-Analytic Form: The objects are represented by the location and the gradient of pixels on the objects' boundary.

Figure 1: A shape represented by its boundary and gradients

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0) [Principle](#page-7-0) [Straight Lines](#page-12-0) [Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

Q2: Which information in the input image does Hough Transforms need?

Hough Transforms needs:

- **O** Edge pixels (location information)
- **②** Gradient of edge pixels (directional information)

 \Rightarrow First-order derivatives can be applied to obtain the required information.

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0) [Principle](#page-7-0) [Straight Lines](#page-12-0) [Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

A simple method for obtaining the required information from the input image:

Example

- \bullet Differentiate input image $I(x, y)$ to obtain gradient image $I_q(x, y)$.
- **2** Find a threshold T, e.g., $T =$ percentile 90% of $|I_q(x, y)|$

 \bullet Obtain edge map: $I_e(x, y) = |I_a(x, y)| > T$

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0) [Principle](#page-7-0) [Straight Lines](#page-12-0) [Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

Equation of straight lines: **Image Space**: Treating a and b as constant parameters, x and y as variables

$$
y = ax + b
$$

Parameter Space: Treating x and y as constant parameters, a and b as variables

 $b = -xa + y$

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0)

[Principle](#page-7-0)

[Straight Lines](#page-12-0) [Circles](#page-36-0)

[General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

Figure 2: Left: Image space; Right: Parameter space

- • A point in image space is corresponding to a line in parameter space.
- A line in image space is corresponding to a point in parameter space.

[Hough Transforms](#page-0-0)

LE Thanh Sach

[Analytic Shape](#page-7-0) [Principle](#page-7-0) [Straight Lines](#page-12-0) [Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

If we have N edge points on the line passing two points, called (x_i, y_i) and (x_j, y_j) (see Fig. [2\)](#page-8-0), then :

- We have N lines in parameter space
- These N lines intersect at a common point: (a', b') in parameter space

 \Rightarrow Detect this **common point** in parameter space \Rightarrow equation of line in image space: $y = a'x + b'$

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0) [Principle](#page-7-0)

[Straight Lines](#page-12-0)

[Circles](#page-36-0)

[General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

So, the basic idea is:

- **1 Discretize** paramter space into small cells. Each cell contains the number of lines passing it
	- The whole space now called the **Accumulator** $A(i, j)$
	- $i = 0, 1, ..., M 1$; $i = 0, 1, ..., N 1$

2 Find the common intersection point by finding the cell that contains the **largest number of lines** passing it. Assume that it is (a', b')

The equation found is: $y = a'x + b'$

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0) [Principle](#page-7-0) [Straight Lines](#page-12-0)

[Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

Challenging Problems

- \bullet **Accuracy**: The accurate estimation of parameter a and b depends on the resolution of the accumulator, i.e., the size of cells in the accumulator
	- $\bullet \Rightarrow$ Discretize parameter space into smaller cells.

2 Memory cost: The accumulator contains so many cells, especially, in the case that there are many parameters and that we use a high resolution accumulator.

8 Large or unlimited range: In some cases, parameters have large ranges, for example, a in $y = ax + b$

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0) [Principle](#page-7-0) [Straight Lines](#page-12-0) [Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0)

[Principle](#page-7-0)

[Straight Lines](#page-12-0)

[Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

[Generalized Hough](#page-64-0) Transforms (GHT) [GHT with Scaling and](#page-78-0) Rotation

Detection of Straight Lines

Questions

1 In line detection, Parameter a, in $y = ax + b$, has an infinite range. How do we solve this problem?

Equation of straight lines:

$$
y = ax + b
$$

Vertical line: $a \rightarrow \infty$

 \Rightarrow use the following form

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0)

[Principle](#page-7-0)

[Straight Lines](#page-12-0)

[Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

 $\mathbf{x} \cos(\theta) + \mathbf{y} \sin(\theta) = \rho$

Figure 3: Hough transforms: (a) Image space, (b) Parameter space

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0)

[Principle](#page-7-0)

[Straight Lines](#page-12-0)

[Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) **Shape**

[A Special Case](#page-56-0)

Figure 4: Hough transforms: (a) Image space, (b) Parameter space

- A fixed point in image space \Leftrightarrow A curve in parameter space
- A line in image space \Leftrightarrow A fixed point in parameter space

[Hough Transforms](#page-0-0)

LE Thanh Sach

[Analytic Shape](#page-7-0)

[Principle](#page-7-0)

[Straight Lines](#page-12-0)

[Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

Advantages of the expression with (θ, ρ)

Range of θ and ρ is **limited**.

$$
\bullet \ -\pi \le \theta \le \pi
$$

$$
\bullet \ -D \le \rho \le D
$$

 D : The maximum distance between two corners in images. Image's size: $R \times C$, then

$$
D = \sqrt{R^2 + C^2}
$$

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0)

[Principle](#page-7-0)

[Straight Lines](#page-12-0)

[Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

[Hough Transforms](#page-0-0)

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0)

[Principle](#page-7-0)

[Straight Lines](#page-12-0)

[Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

[Generalized Hough](#page-64-0) Transforms (GHT) [GHT with Scaling and](#page-78-0) Rotation

Figure 5: Demonstration of the discretization into $M \times N$ cells

Questions

 \bullet After discretization, how does cell's indices (i, j) relate to parameter θ and ρ ?

Along ρ -direction:

$$
\bullet \ D = \sqrt{R^2 + C^2}
$$

- $\rho_{min} = -D$; $\rho_{max} = D$: Left and right bound of the range
- $L_o = 2D$: range's width
- M : number of rows along ρ axis
- $i = 0, 1, ..., M 1$: the index of cells along ρ axis
- $\bullet \Rightarrow$ Quantization step along ρ axis: $\Delta_{\rho} = L_{\rho}/M$

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0)

[Principle](#page-7-0)

[Straight Lines](#page-12-0)

[Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

Along ρ -direction:

• \Rightarrow From cell's index to ρ (at the center of the cell):

$$
\rho \stackrel{\triangle}{=} \frac{\text{dcm}_{idx2\rho}(i)}{p}
$$

$$
= \rho_{min} + i \times \Delta_{\rho} + \frac{\Delta_{\rho}}{2}
$$

 $\bullet \Rightarrow$ From ρ to cell's index

$$
i \stackrel{\triangle}{=} \operatorname{cdm}_{\rho 2idx}(\rho)
$$

= round $\left(\frac{\rho - \rho_{min}}{\Delta_{\rho}}\right)$

1 cdm: continuous to discrete mapping **2** dcm: discrete to continuous mapping

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0)

[Principle](#page-7-0)

[Straight Lines](#page-12-0)

[Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

Along θ -direction:

- $\theta_{min} = -\pi/2$; $\rho_{max} = \pi/2$: Left and right bound of the range
- $L_{\theta} = \pi$: Range's width
- N : number of columns along θ axis
- $j = 0, 1, ..., N 1$: the index of cells along θ axis
- \Rightarrow Quantization step along θ axis: $\Delta_{\theta} = L_{\theta}/N = \pi/N$

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0)

[Principle](#page-7-0)

[Straight Lines](#page-12-0)

[Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

Along θ -direction:

• \Rightarrow From cell's index to θ (at the center of the cell):

$$
\theta \stackrel{\triangle}{=} \frac{\text{dcm}_{idx2\theta}(j)}{1}
$$

$$
= \theta_{min} + j \times \Delta_{\theta} + \frac{\Delta_{\theta}}{2}
$$

 $\bullet \Rightarrow$ From θ to cell's index

$$
j \stackrel{\triangle}{=} \mathsf{cdm}_{\theta 2idx}(\theta)
$$

$$
= \mathsf{round}\left(\frac{\theta - \theta_{min}}{\Delta_{\theta}}\right)
$$

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0)

[Principle](#page-7-0)

[Straight Lines](#page-12-0)

[Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0)

[Principle](#page-7-0)

[Straight Lines](#page-12-0)

[Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

[Generalized Hough](#page-64-0) Transforms (GHT) [GHT with Scaling and](#page-78-0) Rotation

Questions

\odot **How can we detect a straight line with Hough** Transforms?

Algorithm: An Informal representation

Algorithm 1 Hough Line Detection - PART1

- 1: Create an accumulator, referred to as A
- 2: Set 0 for all cells in the accumulator
- 3: for all edge point in $I_e(x, y)$ do
- 4: **for all** $j \in [0, N 1]$ **do** \triangleright iterate on each cell along θ -direction

5:
$$
\theta = \text{dcm}_{idx2\theta}(j)
$$

$$
6. \qquad \rho = x \cos(\theta) + y \sin(\theta)
$$

7:
$$
i = \operatorname{cdm}_{\rho 2idx}(\rho)
$$

8:
$$
A(i,j) = A(i,j) + \Delta(x,y)
$$

9: end for

10: end for

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0)

[Principle](#page-7-0)

[Straight Lines](#page-12-0)

[Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

Algorithm: An Informal representation

Algorithm 2 Hough Line Detection - PART2

11: Find the largest value in the accumulator, assume at (s, t) 12: $\rho^* = \text{dcm}_{idx2\rho}(s)$ 13: $\theta^* = \text{dcm}_{idx2\theta}(t)$

The detected line has following equation:

 $\mathbf{x} \mathbf{cos}(\theta^*) + \mathbf{y} \mathbf{sin}(\theta^*) = \rho^*$

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0)

[Principle](#page-7-0)

[Straight Lines](#page-12-0)

[Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

What is meaning of $\Delta(x, y)$?

- $\Delta(x, y) = 1$ for any edge point
	- Accumulator A (with normalization) shows the probability of having a lines at each pair of (ρ, θ)

⊇ $\Delta(x,y)=|\overrightarrow{g}(x,y)|$, where $\overrightarrow{g}(x,y)$ is the gradient vector at edge point $I_e(x, y)$

• Accumulator A shows the strengthen of the dis-continued information (edge) along pixels on the straight line with parameter (ρ, θ)

$$
\bullet \Delta(x,y) = |\overrightarrow{g}(x,y)| + c, \text{ where } c \text{ is a constant.}
$$

• A variation from the previous

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0)

[Principle](#page-7-0)

[Straight Lines](#page-12-0)

[Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

Exercise

- \bullet Implement line detection with Matlab and $C/C++$
- Assume that $\phi(x, y)$ is the angle of the gradient vector at $I_e(x, y)$ and that the estimation error of the gradient's angle is $[-\Delta_{\phi}, +\Delta_{\phi}]$. How does $\phi(x, y)$ relate to parameter θ ?
- **3** Using on $\phi(x, y)$ and $[-\Delta_{\phi}, +\Delta_{\phi}]$, which cells in A should be increased for each ρ ?

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0)

[Principle](#page-7-0)

[Straight Lines](#page-12-0)

[Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0)

[Principle](#page-7-0)

[Straight Lines](#page-12-0)

[Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

[Generalized Hough](#page-64-0) Transforms (GHT) [GHT with Scaling and](#page-78-0) Rotation

Questions

Θ How can we detect K straight lines with Hough Transforms in the input image?

Questions

 Θ How can we detect K straight lines with Hough Transforms in the input image?

Guideline

- Create a accumulator, same as detecting 1 straight line.
- Use non-maxima suppression to remove (suppress) non-maxima cells.
- Find K largest local maxima by using max-heap

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0)

[Principle](#page-7-0)

[Straight Lines](#page-12-0)

[Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

Algorithm 3 Hough Line Detection - PSEUDO-CODE

- 1: function DETECT_LINE(REF $I_e(x, y)$: edge map, R, C : num of rows and cols of the edge map, $M, N:$ num of rows and cols the accumulator $A(i, j)$, REF $K:$ num of straight lines, REF R_{θ}, R_{ρ} : array of θ and ρ detected)
- 2: Create Accumulator A with size $M \times N$
- 3: COMP_ACCUMULATOR (I_e, R, C, A, M, N) ;
- 4: APPLY_NONMAXIMA_SUPPRESSION (A, M, N)
- 5: FIND_MAXIMA $(A, M, N, R_\theta, R_o, K)$
- 6: end function

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0)

[Principle](#page-7-0)

[Straight Lines](#page-12-0)

[Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

Algorithm 4 Updating the Accumulator, PART 1

1: function COMP ACCUMULATOR(

REF $I(x, y)$: edge map,

 R, C : num of rows and cols of the edge map,

REF A : Accumulator

 $M, N:$ num of rows and cols the accumulator A)

2: **for** r=0 to M-1 **do**
\n3: **for** c=0 to N-1 **do**
\n4:
$$
A(r, c) = 0
$$
; \triangleright Initialize the accumulator
\n5: **end for**
\n6: **end for**

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0)

[Principle](#page-7-0)

[Straight Lines](#page-12-0)

[Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) ape

Special Case

[Hough Transforms](#page-0-0)

LE Thanh Sach

 $hat is it?$

alytic Shape **nciple**

ight Lines

 $\sqrt{\rho}$ [General Curves](#page-52-0)

n-Analytic $_{\rm spe}$

.
Inecial Case

Algorithm 6 Removing Non-maxima

1: function APPLY_NONMAXIMA_SUPPRESSION RFF $A \cdot$ Accumulator M, N : num of rows and cols the accumulator A)

2: **for all** cell (i, j) , accept the border **do** 3: $NW = A(i-1, i-1)$ 4: $N = A(i-1, i)$ 5: $NE = A(i-1, j+1)$ 6: $E = A(i, j + 1)$ 7: $SE = A(i + 1, i + 1)$ 8: $S = A(i + 1, i)$ 9: $SW = A(i+1, j-1)$ 10: $W = A(i, j - 1)$ 11: $C = A(i, j)$

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0)

[Principle](#page-7-0)

[Straight Lines](#page-12-0)

[Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

[Hough Transforms](#page-0-0)

LE Thanh Sach

 $it?$

Shape

[Straight Lines](#page-12-0)

[Circles](#page-36-0) Irves

alytic

Case

Hough (GHT) Scaling and Rotation

Algorithm 8 Finding K Maxima, PART1

1: function $FIND_MAXIMA($ REF A : Accumulator $M, N:$ num of rows and cols the accumulator A REF R_{θ}, R_{ρ} : array of θ and ρ detected REF $K:$ num of straight lines) 2: Create an empty max-heap, referred to as H_{max} 3: **for all** cell (i, j) in A, accept the border **do** 4: if $A(i, j) \neq 0$ then \triangleright an extreme 5: key = $A(i, j)$ 6: data.rho = $\text{dcm}_{idx2o}(i)$ 7: data.theta = $\text{dcm}_{idx2\theta}(i)$ 8: $E = \{ \text{key}, \text{data.rho}, \text{data.theta} \}$ 9: Add E to H_{max} \triangleright re-heap up $10:$ end if 11: end for

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0)

[Principle](#page-7-0)

[Straight Lines](#page-12-0)

[Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

[Hough Transforms](#page-0-0)

LE Thanh Sach

 i hape

[Circles](#page-36-0)

vtic.

ough $\mathsf{H}\check{\mathsf{T}}$) aling and Rotation

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0)

[Principle](#page-7-0)

[Straight Lines](#page-12-0)

[Circles](#page-36-0)

[General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

[Generalized Hough](#page-64-0) Transforms (GHT) [GHT with Scaling and](#page-78-0) Rotation

Detection of Circles

Figure 6: A circle centered at a, radius r, contains three points A, B, and C. We need to detect this circle.

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0) [Principle](#page-7-0)

[Straight Lines](#page-12-0)

[Circles](#page-36-0)

[General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

Assumption: We DO NOT know where is the center **a**, but we know radius **r** in advance.

Facts

• **A** is on circle $(a, r) \Rightarrow a$ is on the circle centered at **A**, radius r. See Fig. [6](#page-37-0)

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0)

[Principle](#page-7-0)

[Straight Lines](#page-12-0)

[Circles](#page-36-0)

[General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

Assumption: We DO NOT know where is the center **a**, but we know radius **r** in advance.

Facts

- **A** is on circle $(a, r) \Rightarrow a$ is on the circle centered at **A**, radius r. See Fig. [6](#page-37-0)
- **B** is on circle $(a, r) \Rightarrow a$ is on the circle centered at **B**, radius r. See Fig. [6](#page-37-0)

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0) [Principle](#page-7-0)

[Straight Lines](#page-12-0)

[Circles](#page-36-0)

[General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

Assumption: We DO NOT know where is the center **a**, but we know radius **r** in advance.

Facts

- **A** is on circle $(a, r) \Rightarrow a$ is on the circle centered at **A**, radius r. See Fig. [6](#page-37-0)
- **B** is on circle $(a, r) \Rightarrow a$ is on the circle centered at **B**, radius r. See Fig. [6](#page-37-0)
- C is on circle (a, r) \Rightarrow a is on the circle centered at C, radius r. See Fig. [6](#page-37-0)
- Center a is the intersection of the three circles. See Fig. [6](#page-37-0)

We can use the **voting-technique**, as used in line detection, to solve the detection

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0) [Principle](#page-7-0)

[Straight Lines](#page-12-0)

[Circles](#page-36-0)

[General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

Circle equation:

Explicit form

$$
(x - x_c)^2 + (y - y_c)^2 = r^2
$$

- Circle: has three parameters, x_c , y_c , and r
- \Rightarrow Accumulator A is an array of 3 dimensions, indexed by x_c , y_c , and r
- $\bullet \Rightarrow A$ is a function of x_c, y_c , and r

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0) [Principle](#page-7-0)

[Straight Lines](#page-12-0)

[Circles](#page-36-0)

[General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

Circle equation:

Explicit form

$$
(x - x_c)^2 + (y - y_c)^2 = r^2
$$

- Range of $x_c : 0, 1, ..., R 1$
- Range of $y_c : 0, 1, ..., C 1$
- Range of $r:0,2,..,R_{max}=\frac{\min(R,C)}{2}$ 2
- $\bullet\,$ Given an edge point (x_i,y_i) in image space:
	- For all points (x_c, y_c) in parameter space, compute dependent parameter r as follows:

$$
r = \sqrt{(x_c - x_i)^2 + (y_c - y_i)^2}
$$

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0)

[Principle](#page-7-0)

[Straight Lines](#page-12-0)

[Circles](#page-36-0)

[General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

Algorithm 10 Hough Circle Detection, Using explicit form

1: Create a 3D-Accumulator, referred to as A
\n2: Set 0 for all cells in the accumulator
\n3: **for all** edge point in
$$
I_e(x, y)
$$
 do
\n4: **for** $x_c = 0$ to $R - 1$ **do**
\n5: **for** $y_c = 0$ to $C - 1$ **do**
\n6: Compute $r = \sqrt{(x_c - x)^2 + (y_c - y)^2}$
\n7: $A(x_c, y_c, r) = A(x_c, y_c, r) + 1$
\n8: **end for**
\n9: **end for**
\n10: **end for**

11: Find the largest cell in $A(x_c, y_c, r)$, assume at (x_c^*, y_c^*, r^*)

The detected circle has following equation: $(x - x_c^*)^2 + (y - y_c^*)^2 = r^{*2}$

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0)

[Principle](#page-7-0)

[Straight Lines](#page-12-0)

[Circles](#page-36-0)

[General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

Figure 7: Parametric form: θ varies from 0 to $2\pi \rightarrow$ **A** draws a circle

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0)

[Principle](#page-7-0)

[Straight Lines](#page-12-0)

[Circles](#page-36-0)

[General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

Analytic Shape - Detection of Circles Circle equation:

Parametric form

$$
x = x_c + r \cos(\theta)
$$

$$
y = y_c + r \sin(\theta)
$$

- θ is not a free parameter
- Range of $\theta: \theta \in [0, 2\pi]$

Advantages of parametric form

Solve free parameters easily, for examples,

$$
x_c = x - r \cos(\theta)
$$

$$
y_c = y - r \sin(\theta)
$$

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0)

[Principle](#page-7-0)

[Straight Lines](#page-12-0)

[Circles](#page-36-0)

[General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

Algorithm: An Informal representation

Algorithm 11 Hough Circle Detection - PART1

1: Create a 3D-Accumulator, named A 2: Set 0 for all cells in the accumulator 3: for all edge point in $I_e(x, y)$ do 4: **for all** $\theta_i \in [0, 2\pi]$ **do** \triangleright Discretization of $[0, 2\pi] \rightarrow \theta_i$ 5: **for all** $r \in [r_{min}, r_{max}]$ do 6: $x_c = x - r \cos(\theta)$ 7: $y_c = y - r \sin(\theta)$ 8: $i, j, k \leftarrow x_c, y_c$ and r respectively. 9: $A(i, j, k) = A(i, j, k) + \Delta(x, y)$ 10: end for 11: end for 12: end for

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0) [Principle](#page-7-0)

[Straight Lines](#page-12-0)

[Circles](#page-36-0)

[General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

Algorithm: An Informal representation

Algorithm 12 Hough Circle Detection - PART2

13: Find the largest cell in $A(i, j, k)$, assume at (i^*, j^*, k^*)

14: Determine x_c^*, y_c^* and r^* from (i^*, j^*, k^*)

The detected circle has following equation:

$$
x = x_c^* + r^* \times \cos(\theta)
$$

$$
y = y_c^* + r^* \times \sin(\theta)
$$

$$
\theta \in [0, 2\pi]
$$

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0)

[Principle](#page-7-0)

[Straight Lines](#page-12-0)

[Circles](#page-36-0)

[General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0)

[Principle](#page-7-0)

[Straight Lines](#page-12-0)

[Circles](#page-36-0)

[General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

[Generalized Hough](#page-64-0) Transforms (GHT) [GHT with Scaling and](#page-78-0) Rotation

Questions

 \odot How can we speed up the circle detection using gradient vectors at edge points?

Questions

 \odot How can we speed up the circle detection using gradient vectors at edge points?

Facts

- \bullet The direction of the gradient vector at every point (x, y) on a circle **passes through the center** of that circle.
- 2 Angle θ_i on Line 4 in Algorithm [11](#page-43-0) and the angle of gradient vector at edge point $I_e(x, y)$ on Line 3 must be coincided. See angle θ in Figure [8](#page-50-0)

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0) [Principle](#page-7-0)

[Straight Lines](#page-12-0)

[Circles](#page-36-0)

[General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

Figure 8: Circle detection: relation between gradient vectors and the center

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0)

[Principle](#page-7-0)

[Straight Lines](#page-12-0)

[Circles](#page-36-0)

[General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

Using gradient vectors

- \bullet θ_i in Line 4 (Algorithm [11\)](#page-43-0) is equal to the angle of the gradient vector at edge point (x, y) on the circle.
- Let $\phi(x, y)$ be gradient angle at edge point (x, y)
- Let $\Delta\phi$ be the maximum estimation error for gradient angle.
- Range of anticipated gradient angle: $R_{arad} = [\phi(x, y) - \Delta \phi, \phi(x, y) + \Delta \phi]$
- So, Line 4 in previous algorithm will changed to

for all $\theta_i \in [\phi(x, y) - \Delta \phi, \phi(x, y) + \Delta \phi]$ do

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0) [Principle](#page-7-0)

[Straight Lines](#page-12-0)

[Circles](#page-36-0)

[General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0)

[Principle](#page-7-0)

[Straight Lines](#page-12-0)

[Circles](#page-36-0)

[General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

[Generalized Hough](#page-64-0) Transforms (GHT) [GHT with Scaling and](#page-78-0) Rotation

Detection of General Curve

Analytic Shape - Detection of General Curve

General form of curves:

$$
f(\mathbf{x}, \mathbf{a}) = 0
$$

Where,

$$
\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}; \mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix}
$$

• $n \cdot n$ variables

• $m : m$ parameters

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0)

[Principle](#page-7-0)

[Straight Lines](#page-12-0)

[Circles](#page-36-0)

[General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

Analytic Shape - Detection of General Curve

General form of circles:

$$
f(\mathbf{x}, \mathbf{a}) = 0
$$

$$
\equiv (x - x_c)^2 + (y - y_c)^2 - r^2 = 0
$$

Where,

$$
\mathbf{x} = \left[\begin{array}{c} x \\ y \end{array} \right]; \mathbf{a} = \left[\begin{array}{c} x_c \\ y_c \\ r \end{array} \right]
$$

$$
\bullet \ \ n=2
$$

 \bullet $m=3$

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0)

[Principle](#page-7-0)

[Straight Lines](#page-12-0)

[Circles](#page-36-0)

[General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

Analytic Shape - Detection of General Curve

Algorithm: An Informal representation

Algorithm 13 Hough Curve Detection

1: Create accumulator $A \equiv$ array of m-dimensions 2: Initialize A with 0 for all cells 3: for all edge point x_i do 4: **for all** cell a_i do 5: if $f(\mathbf{x_i}, \mathbf{a_j}) == 0$ then 6: $A(\mathbf{a_i}) = A(\mathbf{a_i}) + \Delta(x, y)$ 7: end if 8: end for 9: end for 10: Find the largest cell in A , referred to as \mathbf{a}^* 11: return a^*

The detected curve: $f(\mathbf{x}, \mathbf{a}^*) = 0$

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0) [Principle](#page-7-0)

[Straight Lines](#page-12-0)

[Circles](#page-36-0)

[General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0)

[Principle](#page-7-0) [Straight Lines](#page-12-0) [Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

[Generalized Hough](#page-64-0) Transforms (GHT) [GHT with Scaling and](#page-78-0) Rotation

Detection of Non-Analytic Shapes

Non-Analytic Shape - A Special Case

Special Case: Detection of Circles

Important Questions

- **1** How does the gradient direction of a circle's edge point relate to the location of the circle's center?
- **2** How can we generalize such the relationship for more general shapes?
- **3** How can we utilize the generalized relationship to detect a shape described by the shape's edge point?

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0) [Principle](#page-7-0) [Straight Lines](#page-12-0) [Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

Figure 9: Circle: Center c, An edge point p, Gradient vector at \mathbf{p} : \overrightarrow{g} , Angle of \overrightarrow{g} : θ

[Hough Transforms](#page-0-0)

LE Thanh Sach

What we know

1 p or \overrightarrow{p} : is an edge point. Vector form of p is \overrightarrow{p}

$$
\overrightarrow{p}=\left[\begin{array}{c} x \\ y \end{array}\right]
$$

- 2 θ : angle of gradient vector
- $\overline{3}$ $|\overrightarrow{r}|$: radius of the circle being detected.
	- \overrightarrow{r} is the vector from p to the center c (not known now)
	- We just know the magnitude of \overrightarrow{r}

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0) [Principle](#page-7-0) [Straight Lines](#page-12-0) [Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

What we can infer

1 Angle of \overrightarrow{r} : $\alpha = \theta + \pi$ \bullet Vector \overrightarrow{r} :

$$
\overrightarrow{r} = \begin{bmatrix} r \cos(\alpha) \\ r \sin(\alpha) \end{bmatrix}
$$

$$
= \begin{bmatrix} r \cos(\theta + \pi) \\ r \sin(\theta + \pi) \end{bmatrix}
$$

$$
= \begin{bmatrix} -r \cos(\theta) \\ -r \sin(\theta) \end{bmatrix}
$$

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0) [Principle](#page-7-0) [Straight Lines](#page-12-0) [Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

Finally, the location of the center can be computed by:

$$
\overrightarrow{c}=\overrightarrow{p}+\overrightarrow{r}
$$

• Whenever we have \overrightarrow{r} , we know where the circle is.

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0) [Principle](#page-7-0)

[Straight Lines](#page-12-0) [Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

Important Questions

1 How does the gradient direction of a circle's edge point relate to the location of the circle's center?

Solution:

$$
\overrightarrow{r} = \left[\begin{array}{c} -r\cos(\theta) \\ -r\sin(\theta) \end{array} \right]
$$

- \overrightarrow{r} depends on the angle of gradient vector.
- \overrightarrow{r} is a function of the angle of gradient vector.

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0) [Principle](#page-7-0) [Straight Lines](#page-12-0) [Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

Important Questions

1 How does the gradient direction of a circle's edge point relate to the location of the circle's center?

Solution:

$$
\overrightarrow{c} = \overrightarrow{p} + \overrightarrow{r}
$$

$$
= \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} -r\cos(\theta) \\ -r\sin(\theta) \end{bmatrix}
$$

$$
= \begin{bmatrix} x - r\cos(\theta) \\ y - r\sin(\theta) \end{bmatrix}
$$

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0) [Principle](#page-7-0) [Straight Lines](#page-12-0) [Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0) [Principle](#page-7-0) [Straight Lines](#page-12-0) [Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

[Generalized Hough](#page-64-0) Transforms (GHT)

[GHT with Scaling and](#page-78-0) Rotation

Important Questions

2 How can we generalize such the relationship for more general shapes?

SOLUTION: From circle to more general shapes

CIRCLE:

• $|\overrightarrow{r}|$ is the same for every gradient vectors

MORE GENERAL SHAPES:

• $|\overrightarrow{r}|$ varies with the angle of gradient vector.

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0) [Principle](#page-7-0) [Straight Lines](#page-12-0)

[Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

[Generalized Hough](#page-64-0) Transforms (GHT)

SOLUTION: From circle to more general shapes

CIRCLE:

- $|\overrightarrow{r}|$ is the same for every gradient vectors
- Angle α of \overrightarrow{r} is always $(\theta + \pi)$.

MORE GENERAL SHAPES:

- $|\overrightarrow{r}|$ varies with the angle of gradient vector.
- Angle α of \overrightarrow{r} varies with the angle of gradient vector.

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0) [Principle](#page-7-0) [Straight Lines](#page-12-0) [Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

[Generalized Hough](#page-64-0) Transforms (GHT)

SOLUTION: From circle to more general shapes

CIRCLE:

- $|\overrightarrow{r}|$ is the same for every gradient vectors
- Angle α of \overrightarrow{r} is always $(\theta + \pi)$.

MORE GENERAL SHAPES:

- $|\overrightarrow{r}|$ varies with the angle of gradient vector.
- Angle α of \overrightarrow{r} varies with the angle of gradient vector.
- One θ can associated with more than one \overrightarrow{r}

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0) [Principle](#page-7-0) [Straight Lines](#page-12-0) [Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

[Generalized Hough](#page-64-0) Transforms (GHT)

Figure 10: Generalized Shape: An angle θ can be associated with more than one vector \overrightarrow{r}

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0) [Principle](#page-7-0) [Straight Lines](#page-12-0) [Circles](#page-36-0)

[General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

[Generalized Hough](#page-64-0) Transforms (GHT)

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0) [Principle](#page-7-0) [Straight Lines](#page-12-0) [Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

[Generalized Hough](#page-64-0) Transforms (GHT)

[GHT with Scaling and](#page-78-0) Rotation

Important Questions

3 How can we utilize the generalized relationship to detect a shape described by the shape's edge point?

Input

- \bullet An sample shape, S, described edge points on the shape boundary.
- \bullet An image contains shape S

Method for detecting generalized shapes

- **Q PHASE 1:** Describe the relationship between the gradient direction of edge points on S and a chosen point (referred to as reference point) c inside of S .
- **PHASE 2:** Detect instances of S in the input image.

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0) [Principle](#page-7-0) [Straight Lines](#page-12-0) [Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

[Generalized Hough](#page-64-0) Transforms (GHT)

PHASE 1: Description of $\theta \rightarrow \overrightarrow{r}$

 \bullet Chose a point c inside of input shape S.

- This point will be considered as the center of the shape, like center of a circle.
- The purpose of PHASE 2 is to detect c
- **2** Build an loop-up table that maps θ (angle of gradient vectors) to \overrightarrow{r}
	- Name of this mapping: **R-TABLE**
	- One $\theta \rightarrow$ multiple \overrightarrow{r}

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0) [Principle](#page-7-0) [Straight Lines](#page-12-0) [Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

[Generalized Hough](#page-64-0) Transforms (GHT)
Table 1: R-Table illustration, $R(\theta)$

- \bullet Number of entries: M
- 2 θ_0 : smallest angle of gradient vectors $(-\pi)$
- **3** θ_{M-1} : largest angle of gradient vectors $(+\pi)$
- \overrightarrow{A} N_i : number of vector \overrightarrow{r} associated with θ_i
	- $\bullet\; N_i\colon$ maybe a zero, maybe more than 1

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0) [Principle](#page-7-0)

[Straight Lines](#page-12-0)

[Circles](#page-36-0)

[General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

[Generalized Hough](#page-64-0) Transforms (GHT)

Discretization of θ

- $\theta_{min} = -\pi$
- $\theta_{max} = +\pi$

• Range of
$$
\theta
$$
 : $L_{\theta} = 2\pi$

• Number of table entries: M

$$
\bullet \Rightarrow \Delta_\theta = \tfrac{2\pi}{M}
$$

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0) [Principle](#page-7-0) [Straight Lines](#page-12-0)

[Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

[Generalized Hough](#page-64-0) Transforms (GHT)

From i, index of R-TABLE's rows, to θ :

$$
\theta \stackrel{\triangle}{=} \frac{\text{dcm}_{idx2\theta}(i)}{2}
$$

$$
= \theta_{min} + i \times \Delta_{\theta} + \frac{\Delta_{\theta}}{2}
$$

$$
= -\pi + i \times \Delta_{\theta} + \frac{\Delta_{\theta}}{2}
$$

From θ to i, index of R-TABLE's rows:

$$
i \stackrel{\triangle}{=} \operatorname{cdm}_{\theta 2idx}(\theta)
$$

= round $\left(\frac{\theta - \theta_{min}}{\Delta_{\theta}}\right)$
= round $\left(\frac{\theta + \pi}{\Delta_{\theta}}\right)$

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0) [Principle](#page-7-0)

[Straight Lines](#page-12-0) [Circles](#page-36-0)

[General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

[Generalized Hough](#page-64-0) Transforms (GHT)

Input:

• c: a chosen point in previous step.

Algorithm 14 Generalized Hough Transforms: Building R-Table

1: Create **R-Table** R of M rows

2: for all edge point p on shape S do

- 3: Compute vector $\vec{r} = \vec{c} \vec{p}$
- 4: Compute gradient vector \overrightarrow{q} at p
- 5: Compute angle θ of \overrightarrow{a}
- 6: Determine row $i = \text{cdm}_{\theta 2idx}(\theta)$
- 7: Add \overrightarrow{r} to Row i of R

8: end for

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0) [Principle](#page-7-0) [Straight Lines](#page-12-0)

[Circles](#page-36-0)

[General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

[Generalized Hough](#page-64-0) Transforms (GHT)

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0) [Principle](#page-7-0) [Straight Lines](#page-12-0)

[Circles](#page-36-0)

[General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

[Generalized Hough](#page-64-0) Transforms (GHT)

[GHT with Scaling and](#page-78-0) Rotation

PHASE 2: Detecting instances of S

- \bigcirc Create 2D-Accumulator A for each possible of center $c(x_c, y_c)$
- Ω Detect the largest cell in A

Algorithm 15 Detection of instances of S 1: Create a 2D-Accumulator, referred to as A 2: Set 0 for all cells in the accumulator 3: for all edge point in $I_e(x, y)$ do 4: Create vector $p = [x,-y]^T$ \triangleright negative y, because y-axis: upright, x-axis: to-right 5: Compute angle θ of the gradient at $I_e(x, y)$ 6: Determine R-TABLE's row: $l = \text{cdm}_{\theta 2idx}(\theta)$ 7: Get List L of vector \overrightarrow{r} from Row l 8: **for all** vector \overrightarrow{r}_i in L do 9: Compute vector $\vec{c} = \vec{p} + \vec{r}_i$ 10: Determine corresponding cell (x_c, y_c) in A from \vec{c} 11: $A(x_c, y_c) = A(x_c, y_c) + \Delta(x, y)$ 12^c end for 13: end for 14: Find the largest cell in $A(x_c, y_c)$, assume at (x_c^*, y_c^*)

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0) [Principle](#page-7-0) [Straight Lines](#page-12-0) [Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

[Generalized Hough](#page-64-0) Transforms (GHT)

Question

How can detect a shape in that case described as follows?

Input:

- A sample of a shape S specified by the shape's edge points.
- An input image $I(x, y)$

Capability of the Detection:

 $\bullet\,$ is able to detect instances S_i in the input $I(x,y)$ in the case that S_i is a rotated and/or scaled version of S by an angle α and a scaling factor s?

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0) [Principle](#page-7-0) [Straight Lines](#page-12-0) [Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

[Generalized Hough](#page-64-0) Transforms (GHT)

GHT without Scaling and Rotation

R-Table: $R(\theta)$ i is a multivalued vector function

- Input: θ , for example, $\theta=\theta_i$, See Table [1](#page-72-0)
- Output: zero or multiple vectors: $\overrightarrow{r}_{i,1};$ $\overrightarrow{r}_{i,2};$...; $\overrightarrow{r}_{i,N_i}$

Accumulator : $A(x_c, y_c)$ is a **2D-array**, indexed by the coordinates of the reference point c

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0) [Principle](#page-7-0) [Straight Lines](#page-12-0) [Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

[Generalized Hough](#page-64-0) Transforms (GHT)

What do Scaling and Rotation affect the shape S ?

SCALING:

• Causes vector \overrightarrow{r} in R-Table scaled

ROTATION:

 \bullet Causes angle of gradient rotated an angle α

• Causes vector \overrightarrow{r} in R-Table rotated an angle α

ACCUMULATOR A:

- \bullet Need two more parameters: rotation angle α and scaling factor s
- $\mathbf{Q} \Rightarrow A(x_c, y_c, \alpha, s)$

R-TABLE $R(\theta)$:

1 Rebuilding is NOT required

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0) [Principle](#page-7-0) [Straight Lines](#page-12-0) [Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

[Generalized Hough](#page-64-0) Transforms (GHT)

SCALING:

Scaling-matrix:

$$
M_s = \left[\begin{array}{cc} s_x & 0 \\ 0 & s_y \end{array} \right]
$$

Scaled vector \overrightarrow{r}^s of \overrightarrow{r} :

$$
\overrightarrow{r}^s = M_s \times \overrightarrow{r}
$$

Scaling and Accumulator

- Perform the scaling for all vectors in R-Table.
- Increase A for each scaling factor

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0) [Principle](#page-7-0)

[Straight Lines](#page-12-0) [Circles](#page-36-0)

[General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

[Generalized Hough](#page-64-0) Transforms (GHT)

ROTATION:

Rotation-matrix for rotation angle α :

$$
M_r = \begin{bmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{bmatrix}
$$

Rotated vector \overrightarrow{r}^{rot} of \overrightarrow{r} :

$$
\overrightarrow{r}^{rot} = M_r \times \overrightarrow{r}
$$

Rotation and Accumulator

- Perform the rotation for all vectors in R-Table.
- Increase A for each rotation angle α , $0 \rightarrow 2\pi$ in general case.

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0) [Principle](#page-7-0)

[Straight Lines](#page-12-0) [Circles](#page-36-0)

[General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

[Generalized Hough](#page-64-0) Transforms (GHT)

Steps to rotating the whole shape S by α

- **■** All R-Table's indices are increased by $-\alpha$, takes modulo by 2π after increasing.
	- θ : angle of gradient vector.
	- Compute $\theta^{rot} = (\theta \alpha)$ modulo 2π
	- \equiv Treat R-Table as a circular buffer, shift θ around the circular buffer an amount $-\alpha$

\bullet All vectors found at θ^r are rotated by α

[Hough Transforms](#page-0-0)

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0) [Principle](#page-7-0) [Straight Lines](#page-12-0) [Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

[Generalized Hough](#page-64-0) Transforms (GHT)

Algorithm 16 Detection of instances of S with scaling and rotation

- 1: Create a 4D-Accumulator, referred to as $A(x_c, y_c, r, s)$
- 2: Set 0 for all cells in the accumulator
- 3: for all edge point in $I_e(x, y)$ do
- 4: Create vector $p={[x,-y]}^T$ \triangleright negative y, because y-axis: upright, x-axis: to-right
- 5: Obtain gradient vector \overrightarrow{q} at $I_e(x, y)$
- 6: Compute angle θ of \vec{q}
- 7: **for all** rotation angle α do
- 8: Compute $\theta^{rot} = (\theta \alpha)$ modulo 2π
- 9: Find R-TABLE's row: $l = \text{cdm}_{\theta 2 i dx}(\theta^{rot})$
- 10: Get List L of vector \overrightarrow{r} from Row l
- 11: Compute rotation matrix $M_r(\alpha)$

LE Thanh Sach

[What is it?](#page-2-0)

[Analytic Shape](#page-7-0) [Principle](#page-7-0) [Straight Lines](#page-12-0) [Circles](#page-36-0) [General Curves](#page-52-0)

[Non-Analytic](#page-56-0) Shape

[A Special Case](#page-56-0)

[Generalized Hough](#page-64-0) Transforms (GHT)

[Hough Transforms](#page-0-0)

LE Thanh Sach