Hough Transforms

LE Thanh Sach

Bk

Chapter 7.1 Hough Transforms

Image Processing and Computer Vision

LE Thanh Sach

Faculty of Computer Science and Engineering Ho Chi Minh University of Technology, VNU-HCM

Analytic Shape Principle Straight Lines Circles General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Overview

1 What is it?

2 Analytic Shape

Principle Straight Lines Circles General Curves

3 Non-Analytic Shape

A Special Case Generalized Hough Transforms (GHT) GHT with Scaling and Rotation

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Principle Straight Lines Circles General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Hough transforms is a method for locating objects in input images.

Questions

Q1: How do we specify objects being located?

Q2: Which information in the input image does Hough Transforms need?

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape Principle Straight Lines Circles General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Q1: How do we specify objects being located?

The objects can be expressed by one of the followings.

 Analytic Form: The objects are represented by mathematical relations, for examples,

Straight line:
$$y = ax + b$$

Circle: $(x - a)^2 + (y - b)^2 = r^2$
Ellipse: $\left(\frac{x - x_c}{a}\right)^2 + \left(\frac{y - y_c}{b}\right)^2 = 1$
General form: $f(\mathbf{x}, \mathbf{a}) = 0$

• x, a : vector of variables and parameters respectively.

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape Principle Straight Lines Circles General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

One-Analytic Form: The objects are represented by the location and the gradient of pixels on the objects' boundary.

Figure 1: A shape represented by its boundary and gradients

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape Principle Straight Lines Circles General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Q2: Which information in the input image does Hough Transforms need?

Hough Transforms needs:

- Edge pixels (location information)
- Oradient of edge pixels (directional information)

 \Rightarrow First-order derivatives can be applied to obtain the required information.

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape Principle Straight Lines Circles General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

A simple method for obtaining the required information from the input image:

Example

- ① Differentiate input image I(x, y) to obtain gradient image $I_g(x, y)$.
- $\ensuremath{ \ensuremath{ \mathcal{O} }}$ Find a threshold T, e.g., T= percentile 90% of $|I_g(x,y)|$

(3) Obtain edge map: $I_e(x,y) = |I_g(x,y)| > T$

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape Principle Straight Lines Circles General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Equation of straight lines: Image Space: Treating a and b as constant parameters, x and y as variables

$$y = ax + b$$

Parameter Space: Treating x and y as constant parameters, a and b as variables

$$b = -xa + y$$

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Principle

Straight Lines Circles

General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Figure 2: Left: Image space; Right: Parameter space

- A point in image space is corresponding to a line in parameter space.
- A line in image space is corresponding to a point in parameter space.

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape Principle

Straight Lines

Circles

General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

If we have N edge points on the line passing two points, called (x_i, y_i) and (x_j, y_j) (see Fig. 2), then :

- We have N lines in parameter space
- These N lines intersect at a common point: (a', b') in parameter space

 \Rightarrow Detect this **common point** in parameter space \Rightarrow equation of line in image space: y = a'x + b'

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Principle

Straight Lines

General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

So, the basic idea is:

- **1 Discretize** paramter space into small cells. Each cell contains the number of lines passing it
 - The whole space now called the **Accumulator** A(i, j)
 - i = 0, 1, ..., M 1; i = 0, 1, ..., N 1

Find the common intersection point by finding the cell that contains the largest number of lines passing it. Assume that it is (a', b')

The equation found is: y = a'x + b'

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Principle

Straight Lines Circles General Curves

General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Challenging Problems

- Accuracy: The accurate estimation of parameter a and b depends on the resolution of the accumulator, i.e., the size of cells in the accumulator
 - \Rightarrow Discretize parameter space into smaller cells.

Memory cost: The accumulator contains so many cells, especially, in the case that there are many parameters and that we use a high resolution accumulator.

 Large or unlimited range: In some cases, parameters have large ranges, for example, a in y = ax + b

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Principle

Straight Lines Circles

General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Principle

Straight Lines

Circles General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

GHT with Scaling and Rotation

Detection of Straight Lines

Questions

1 In line detection, Parameter a, in y = ax + b, has an infinite range. How do we solve this problem?

Equation of straight lines:

$$y = ax + b$$

Vertical line: $a \to \infty$ \Rightarrow use the following form

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Principle

Straight Lines

Circles

General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

 $\mathbf{x}\cos(\theta) + \mathbf{y}\sin(\theta) = \rho$

Figure 3: Hough transforms: (a) Image space, (b) Parameter space

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Principle

Straight Lines

Circles

General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Figure 4: Hough transforms: (a) Image space, (b) Parameter space

- A fixed point in image space ⇔ A curve in parameter space
- A line in image space ⇔ A fixed point in parameter space

Hough Transforms

LE Thanh Sach

Analytic Shape

Principle

Straight Lines

Circles

General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Advantages of the expression with (θ, ρ)

Range of θ and ρ is **limited**.

•
$$-\pi \le \theta \le \pi$$

•
$$-D \le \rho \le D$$

D: The maximum distance between two corners in images. Image's size: $R \times C$, then

$$D = \sqrt{R^2 + C^2}$$

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Principle

Straight Lines

Circles General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Demonstration of the discretization into $M \times N$ cells

Hough Transforms

Analytic Shape

Principle

Straight Lines

Circles General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

GHT with Scaling and Rotation

Questions

Figure 5:

2 After discretization, how does cell's indices (i, j) relate to parameter θ and ρ ?

Along ρ -direction:

•
$$D = \sqrt{R^2 + C^2}$$

- $\rho_{min} = -D; \rho_{max} = D$: Left and right bound of the range
- $L_{\rho} = 2D$: range's width
- M : number of rows along ρ axis
- i = 0, 1, .., M 1: the index of cells along ρ axis
- \Rightarrow Quantization step along ρ axis: $\Delta_{\rho} = L_{\rho}/M$

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Principle

Straight Lines

Circles General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Along ρ -direction:

• \Rightarrow From cell's index to ρ (at the center of the cell):

$$\rho \stackrel{\triangle}{=} \frac{\mathsf{dcm}_{idx2\rho}(i)}{= \rho_{min} + i \times \Delta_{\rho} + \frac{\Delta_{\rho}}{2}}$$

• \Rightarrow From ρ to cell's index

$$i \stackrel{\Delta}{=} \operatorname{cdm}_{\rho 2 i d x}(\rho)$$
$$= \operatorname{round}\left(\frac{\rho - \rho_{min}}{\Delta_{\rho}}\right)$$

cdm: continuous to discrete mapping
 dcm: discrete to continuous mapping

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Principle

Straight Lines

Circles General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Along θ -direction:

- $\theta_{min} = -\pi/2$; $\rho_{max} = \pi/2$: Left and right bound of the range
- $L_{\theta} = \pi$: Range's width
- N : number of columns along θ axis
- j = 0, 1, .., N 1: the index of cells along θ axis

•
$$\Rightarrow$$
 Quantization step along θ axis:
 $\Delta_{\theta} = L_{\theta}/N = \pi/N$

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Principle

Straight Lines

Circles General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Along θ -direction:

• \Rightarrow From cell's index to θ (at the center of the cell):

$$\begin{split} \theta &\stackrel{\Delta}{=} \mathsf{dcm}_{idx2\theta}(j) \\ &= \theta_{min} + j \times \Delta_{\theta} + \frac{\Delta_{\theta}}{2} \end{split}$$

• \Rightarrow From θ to cell's index

$$j \stackrel{\Delta}{=} \operatorname{cdm}_{\theta 2 i dx}(\theta)$$
$$= \operatorname{round}\left(\frac{\theta - \theta_{min}}{\Delta_{\theta}}\right)$$

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Principle

Straight Lines

Circles General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Principle

Straight Lines

Circles

General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

GHT with Scaling and Rotation

Questions

6 How can we detect a straight line with Hough Transforms?

Algorithm: An Informal representation

Algorithm 1 Hough Line Detection - PART1

- 1: Create an accumulator, referred to as A
- 2: Set 0 for all cells in the accumulator
- 3: for all edge point in $I_e(x,y)$ do
- 4: for all $j \in [0, N-1]$ do \triangleright iterate on each cell along θ -direction

5:
$$\theta = \operatorname{\mathsf{dcm}}_{idx2\theta}(j)$$

6:
$$\rho = x \cos(\theta) + y \sin(\theta)$$

7:
$$i = \operatorname{cdm}_{\rho 2idx}(\rho)$$

8:
$$A(i,j) = A(i,j) + \Delta(x,y)$$

9: end for

10: **end for**

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Principle

Straight Lines

Circles General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Algorithm: An Informal representation

Algorithm 2 Hough Line Detection - PART2

11: Find the largest value in the accumulator, assume at (s, t)12: $\rho^* = \operatorname{dcm}_{idx2\rho}(s)$ 13: $\theta^* = \operatorname{dcm}_{idx2\theta}(t)$

The detected line has following equation:

 $\mathbf{x}\mathbf{cos}(\theta^*) + \mathbf{y}\mathbf{sin}(\theta^*) = \rho^*$

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Principle

Straight Lines

Circles

General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

What is meaning of $\Delta(x, y)$?

1 $\Delta(x,y) = 1$ for any edge point

• Accumulator A (with normalization) shows the probability of having a lines at each pair of (ρ, θ)

2 $\Delta(x,y) = |\overrightarrow{g}(x,y)|$, where $\overrightarrow{g}(x,y)$ is the gradient vector at edge point $I_e(x,y)$

• Accumulator A shows the strengthen of the dis-continued information (edge) along pixels on the straight line with parameter (ρ, θ)

3
$$\Delta(x,y) = |\overrightarrow{g}(x,y)| + c$$
, where c is a constant.

• A variation from the previous

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Principle

Straight Lines

Circles General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Exercise

- Implement line detection with Matlab and C/C++
- **2** Assume that $\phi(x, y)$ is the angle of the gradient vector at $I_e(x, y)$ and that the estimation error of the gradient's angle is $[-\Delta_{\phi}, +\Delta_{\phi}]$. How does $\phi(x, y)$ relate to parameter θ ?
- **3** Using on $\phi(x, y)$ and $[-\Delta_{\phi}, +\Delta_{\phi}]$, which cells in A should be increased for each ρ ?

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Principle

Straight Lines

Circles General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Principle

Straight Lines

Circles General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

GHT with Scaling and Rotation

Questions

6 How can we detect *K* straight lines with Hough Transforms in the input image?

Questions

6 How can we detect *K* straight lines with Hough Transforms in the input image?

Guideline

- Create a accumulator, same as detecting 1 straight line.
- Use **non-maxima suppression** to remove (suppress) non-maxima cells.
- Find K largest local maxima by using max-heap

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Principle

Straight Lines

Circles General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Algorithm 3 Hough Line Detection - PSEUDO-CODE

- 1: function DETECT_LINE(REF $I_e(x, y)$: edge map, R, C: num of rows and cols of the edge map, M, N: num of rows and cols the accumulator A(i, j), REF K: num of straight lines, REF R_{θ}, R_{ρ} : array of θ and ρ detected)
- 2: Create Accumulator A with size $M \times N$
- 3: COMP_ACCUMULATOR(I_e, R, C, A, M, N);
- 4: $APPLY_NONMAXIMA_SUPPRESSION(A, M, N)$
- 5: FIND_MAXIMA $(A, M, N, R_{\theta}, R_{\rho}, K)$
- 6: end function

LE Thanh Sach

What is it?

Analytic Shape

Principle

Straight Lines

Circles General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Algorithm 4 Updating the Accumulator, PART 1

- 1: function COMP_ACCUMULATOR(REF I(x, y): edge map, R, C: num of rows and cols of the edge map, REF A: Accumulator
 - M, N: num of rows and cols the accumulator A)

2:for r=0 to M-1 doShape3:for c=0 to N-1 doA Special Case4:
$$A(r,c) = 0;$$
> Initialize the accumulatorGeneratized the Transforms (G5:end for6:end for

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Principle

Straight Lines

Circles General Curves

Non-Analytic

HT)

ing and

Algorithm 5 Updating the Accumulator, PART 2	
7: $\Delta_{\theta} = L_{\theta}/N$	
8: $\Delta_ ho = L_ ho/M$	BK TP.HCM
9: $ ho_{min}=-D$; $ heta_{min}=-\pi/2$	
10: for $x = 0$ to $R - 1$ do	What is it?
11: for $y = 0$ to $C - 1$ do	Analytic Shape
12: if $I_e(x,y) \neq 0$ then $\triangleright (x,y)$: edge point	Principle Straight Lines
13: for $j = 0$ to $M - 1$ do	Circles General Curves
14: $\theta = \operatorname{dcm}_{idx2\theta}(j)$	Non-Analytic
15: $\rho = x\cos(\theta) + y\sin(\theta)$	A Special Case
16: $i = \operatorname{cdm}_{\rho 2idx}(\rho)$	Generalized Hough Transforms (GHT)
17: $A(i,j) = A(i,j) + \Delta(x,y) $ \triangleright Voting	GHT with Scaling and Rotation
18: end for	
19: end if	
20: end for	
21: end for	
22: end function	

Hough Transforms

LE Thanh Sach

Algorithm 6 Removing Non-maxima

1: function APPLY_NONMAXIMA_SUPPRESSION(REF A : Accumulator M, N: num of rows and cols the accumulator A)

for all cell (i, j), accept the border **do** 2: NW = A(i - 1, j - 1)3: N = A(i - 1, j)4. NE = A(i - 1, i + 1)5: E = A(i, j+1)6. SE = A(i + 1, j + 1)7: S = A(i+1, j)8. SW = A(i+1, j-1)9: W = A(i, j-1)10: C = A(i, j)11:

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Principle

Straight Lines

Circles

General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Hough Transforms

LE Thanh Sach

hape

tic

ough HT)

ling and

		TD M	
Alg	Algorithm 7 Non-maxima Suppression		
12:	C1 = (C < NW) OR (C < N)	What is it	
13:	C2 = (C < NE) OR (C < E)	Analytic S	
14:	C3 = (C < SE) OR (C < S)	Principle	
15.	$CA = (C < SW) \cap P(C < W)$	Straight Lines	
12:	C4 = (C < SW) OR (C < W)	General Curves	
16:	if $(C1 \text{ OR } C2 \text{ OR } C3 \text{ OR } C4)$ then	Nen Analu	
17:	$A(i, j) = 0$ \triangleright suppress non-maxima	Shape	
18:	end if	A Special Case Generalized Ho	
19:	end for	GHT with Sca Rotation	
20:	end function	ristation	

Algorithm 8 Finding K Maxima, PART1

1: function FIND_MAXIMA(RFF $A \cdot Accumulator$ M, N: num of rows and cols the accumulator A REF R_{θ}, R_{ρ} : array of θ and ρ detected REF K: num of straight lines) 2: Create an empty max-heap, referred to as H_{max} for all cell (i, j) in A, accept the border do 3 if $A(i, j) \neq 0$ then 4: \triangleright an extreme key = A(i, j)5: data.rho = $\frac{\mathsf{dcm}_{idx2o}(i)}{\mathsf{dcm}_{idx2o}(i)}$ 6: 7. data.theta = $\operatorname{dcm}_{idr2\theta}(j)$ $E = \{ key, data.rho, data.theta \}$ 8: Add E to H_{max} ▷ re-heap up 9: end if 10: end for 11:

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Principle

Straight Lines

Circles

General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Hough Transforms

LE Thanh Sach

is it?

ic Shape

Lines

Curves

nalytic

al Case

zed Hough ms (GHT)

th Scaling and

Alg	Algorithm 9 Finding K Maxima, PART2		
12:	k = 0	What	
13:	while $(H_{max} ext{ is not empty})$ AND $(k < K)$ do	Analyt	
14:	$E = Remove \ maximum \ element \ from \ H_{max}$	Principle	
15:	$R_{\rho}[k] = E.$ data.rho	Circles	
16:	$R_{\theta}[k] = E$.data.theta	General	
17:	$k = k + 1$ \triangleright next maximum	Non-A Shape	
18:	end while	A Specia Generali	
19:	$K = k;$ \triangleright Update num of lines found	GHT wit Rotation	
20:	end function	Notation	
Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Principle

Straight Lines

Circles

General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

GHT with Scaling and Rotation

Detection of Circles

Figure 6: A circle centered at **a**, radius **r**, contains three points **A**, **B**, and **C**. We need to detect this circle.

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Principle

Straight Lines

Circles

General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Assumption: We DO NOT know where is the center \mathbf{a} , but we know radius \mathbf{r} in advance.

Facts

• A is on circle (a, r) \Rightarrow a is on the circle centered at A, radius r. See Fig. 6

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Principle

Straight Lines

Circles

General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Assumption: We DO NOT know where is the center \mathbf{a} , but we know radius \mathbf{r} in advance.

Facts

- A is on circle (a, r) \Rightarrow a is on the circle centered at A, radius r. See Fig. 6
- **B** is on circle (**a**, **r**) \Rightarrow **a** is on the circle centered at **B**, radius **r**. See Fig. 6

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Principle

Straight Lines

Circles

General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Assumption: We DO NOT know where is the center \mathbf{a} , but we know radius \mathbf{r} in advance.

Facts

- A is on circle (a, r) \Rightarrow a is on the circle centered at A, radius r. See Fig. 6
- **B** is on circle (**a**, **r**) \Rightarrow **a** is on the circle centered at **B**, radius **r**. See Fig. 6
- C is on circle (a, r) ⇒ a is on the circle centered at C, radius r. See Fig. 6
- **Center a** is the intersection of the three circles. See Fig. 6

We can use the **voting-technique**, as used in line detection, to solve the detection

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape Principle

Straight Lines

Circle

General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Circle equation:

Explicit form

$$(x - x_c)^2 + (y - y_c)^2 = r^2$$

- Circle: has three parameters, x_c , y_c , and r
- \Rightarrow Accumulator A is an array of 3 dimensions, indexed by x_c , y_c , and r
- $\Rightarrow A$ is a function of x_c, y_c , and r

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Principle

Straight Lines

Circles

General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Circle equation:

Explicit form

$$(x - x_c)^2 + (y - y_c)^2 = r^2$$

- Range of $x_c: 0, 1, ..., R-1$
- Range of $y_c: 0, 1, .., C 1$
- Range of $r: 0, 2, ..., R_{max} = \frac{\min(R, C)}{2}$
- Given an edge point (x_i, y_i) in image space:
 - For all points (x_c, y_c) in parameter space, compute dependent parameter r as follows:

$$r = \sqrt{(x_c - x_i)^2 + (y_c - y_i)^2}$$

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Principle

Straight Lines

Circles

General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Algorithm 10 Hough Circle Detection, Using explicit form

1: Create a 3D-Accumulator, referred to as
$$A$$

2: Set 0 for all cells in the accumulator
3: for all edge point in $I_e(x, y)$ do
4: for $x_c = 0$ to $R - 1$ do
5: for $y_c = 0$ to $C - 1$ do
6: Compute $r = \sqrt{(x_c - x)^2 + (y_c - y)^2}$
7: $A(x_c, y_c, r) = A(x_c, y_c, r) + 1$
8: end for
9: end for
10: end for

11: Find the largest cell in $A(x_c, y_c, r)$, assume at (x_c^*, y_c^*, r^*)

The detected circle has following equation: $(x - x_c^*)^2 + (y - y_c^*)^2 = r^{*2}$

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Principle

Straight Lines

Circles

General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Figure 7: Parametric form: θ varies from 0 to $2\pi \rightarrow \mathbf{A}$ draws a circle

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Principle

Straight Lines

Circles

General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Analytic Shape - Detection of Circles Circle equation:

Parametric form

$$x = x_c + r\cos(\theta)$$
$$y = y_c + r\sin(\theta)$$

- θ is not a free parameter
- Range of θ : $\theta \in [0, 2\pi]$

Advantages of parametric form

Solve free parameters easily, for examples,

$$x_c = x - r\cos(\theta)$$
$$y_c = y - r\sin(\theta)$$

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Principle

Straight Lines

Circles

General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Algorithm: An Informal representation

Algorithm 11 Hough Circle Detection - PART1

1: Create a 3D-Accumulator, named A2: Set 0 for all cells in the accumulator 3: for all edge point in $I_e(x, y)$ do for all $\theta_i \in [0, 2\pi]$ do Discretization of 4: $[0, 2\pi] \rightarrow \theta_i$ for all $r \in [r_{min}, r_{max}]$ do 5: $x_c = x - r\cos(\theta)$ 6: 7: $y_c = y - r\sin(\theta)$ $i, j, k \leftarrow x_c, y_c$ and r respectively. 8: $A(i, j, k) = A(i, j, k) + \Delta(x, y)$ 9: end for 10: end for 11: 12: end for

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Principle

Straight Lines

Circles

General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Algorithm: An Informal representation

Algorithm 12 Hough Circle Detection - PART2

13: Find the largest cell in A(i, j, k), assume at (i^*, j^*, k^*) 14: Determine x_c^*, y_c^* and r^* from (i^*, j^*, k^*)

The detected circle has following equation:

$$x = x_c^* + r^* \times \cos(\theta)$$

$$y = y_c^* + r^* \times \sin(\theta)$$

$$\theta \in [0, 2\pi]$$

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Principle

Straight Lines

Circles

General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Principle

Straight Lines

Circles

General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

GHT with Scaling and Rotation

Questions

How can we speed up the circle detection using gradient vectors at edge points?

Questions

How can we speed up the circle detection using gradient vectors at edge points?

Facts

- **1** The direction of the gradient vector at every point (x, y) on a circle passes through the center of that circle.
- 2 Angle θ_i on Line 4 in Algorithm 11 and the angle of gradient vector at edge point $I_e(x, y)$ on Line 3 must be coincided. See angle θ in Figure 8

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape Principle

Straight Lines

Circles

General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Figure 8: Circle detection: relation between gradient vectors and the center

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Principle

Straight Lines

Circles

General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Using gradient vectors

- θ_i in Line 4 (Algorithm 11) is equal to the angle of the gradient vector at edge point (x, y) on the circle.
- Let $\phi(x,y)$ be gradient angle at edge point (x,y)
- Let $\Delta\phi$ be the maximum estimation error for gradient angle.
- Range of anticipated gradient angle: $R_{grad} = [\phi(x, y) - \Delta \phi, \phi(x, y) + \Delta \phi]$
- So, Line 4 in previous algorithm will changed to

for all $\theta_i \in [\phi(x,y) - \Delta \phi, \phi(x,y) + \Delta \phi]$ do

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape Principle

Frincipie

Straight Lines

General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Principle

Straight Lines

Circles

General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

GHT with Scaling and Rotation

Detection of General Curve

Analytic Shape - Detection of General Curve

General form of curves:

$$f(\mathbf{x}, \mathbf{a}) = 0$$

Where,

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \\ x_n \end{bmatrix}; \mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ \vdots \\ \vdots \\ a_m \end{bmatrix}$$

- n : n variables
- m:m parameters

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Principle

Straight Lines

Circles

General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Analytic Shape - Detection of General Curve

General form of circles:

$$f(\mathbf{x}, \mathbf{a}) = 0$$

$$\equiv (x - x_c)^2 + (y - y_c)^2 - r^2 = 0$$

Where,

$$\mathbf{x} = \left[\begin{array}{c} x \\ y \end{array} \right]; \mathbf{a} = \left[\begin{array}{c} x_c \\ y_c \\ r \end{array} \right]$$

•
$$n = 2$$

• m = 3

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Straight Lines

Circles

General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Analytic Shape - Detection of General Curve

Algorithm: An Informal representation

Algorithm 13 Hough Curve Detection

1: Create accumulator $A \equiv$ array of *m*-dimensions 2: Initialize A with 0 for all cells 3: for all edge point x_i do for all cell a_i do 4: if $f(\mathbf{x_i}, \mathbf{a_i}) == 0$ then 5: $A(\mathbf{a_i}) = A(\mathbf{a_i}) + \Delta(x, y)$ 6: end if 7: end for R٠ 9. end for 10: Find the largest cell in A, referred to as \mathbf{a}^* 11: return a*

The detected curve: $f(\mathbf{x}, \mathbf{a}^*) = 0$

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape Principle Straight Lines

Circles

General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Principle Straight Lines Circles General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

GHT with Scaling and Rotation

Detection of Non-Analytic Shapes

Non-Analytic Shape - A Special Case

Special Case: Detection of Circles

Important Questions

- How does the gradient direction of a circle's edge point relate to the location of the circle's center?
- 2 How can we generalize such the relationship for more general shapes?
- 3 How can we utilize the generalized relationship to detect a shape described by the shape's edge point?

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape Principle Straight Lines Circles General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Figure 9: Circle: Center c, An edge point **p**, Gradient vector at **p**: \overrightarrow{g} , Angle of \overrightarrow{g} : θ

7.1.57

Hough Transforms

LE Thanh Sach

What we know

1 \mathbf{p} or \overrightarrow{p} : is an edge point. Vector form of \mathbf{p} is \overrightarrow{p}

$$\overrightarrow{p} = \left[\begin{array}{c} x \\ y \end{array} \right]$$

2 θ : angle of gradient vector

- **3** $|\vec{r}|$: radius of the circle being detected.
 - \overrightarrow{r} is the vector from **p** to the center **c** (not known now)
 - We just know the magnitude of \overrightarrow{r}

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Straight Lines Circles General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

What we can infer

1 Angle of
$$\overrightarrow{r}$$
: $\alpha = \theta + \pi$
2 Vector \overrightarrow{r} :

$$\vec{r} = \begin{bmatrix} r \cos(\alpha) \\ r \sin(\alpha) \end{bmatrix}$$
$$= \begin{bmatrix} r \cos(\theta + \pi) \\ r \sin(\theta + \pi) \end{bmatrix}$$
$$= \begin{bmatrix} -r \cos(\theta) \\ -r \sin(\theta) \end{bmatrix}$$

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape Principle Straight Lines Circles General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Finally, the location of the center can be computed by:

$$\overrightarrow{\mathbf{c}} = \overrightarrow{\mathbf{p}} + \overrightarrow{\mathbf{r}}$$

• Whenever we have $\overrightarrow{\mathbf{r}}$, we know where the circle is.

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Principle Straight Lines Circles General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Important Questions

How does the gradient direction of a circle's edge point relate to the location of the circle's center?

Solution:

$$\overrightarrow{r'} = \begin{bmatrix} -r\cos(\theta) \\ -r\sin(\theta) \end{bmatrix}$$

- \overrightarrow{r} depends on the angle of gradient vector.
- \overrightarrow{r} is a function of the angle of gradient vector.

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Straight Lines Circles General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Important Questions

How does the gradient direction of a circle's edge point relate to the location of the circle's center?

Solution:

$$\vec{c} = \vec{p} + \vec{r}$$

$$= \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} -r\cos(\theta) \\ -r\sin(\theta) \end{bmatrix}$$

$$= \begin{bmatrix} x - r\cos(\theta) \\ y - r\sin(\theta) \end{bmatrix}$$

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Straight Lines Circles

General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Straight Lines

Circles

General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

GHT with Scaling and Rotation

Important Questions

2 How can we generalize such the relationship for more general shapes?

SOLUTION: From circle to more general shapes

CIRCLE:

• $|\overrightarrow{r}|$ is the same for every gradient vectors

MORE GENERAL SHAPES:

• $|\overrightarrow{r}|$ varies with the angle of gradient vector.

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Principle Straight Lines Circles General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

SOLUTION: From circle to more general shapes

CIRCLE:

- $|\overrightarrow{r}|$ is the same for every gradient vectors
- Angle α of \overrightarrow{r} is always $(\theta + \pi)$.

MORE GENERAL SHAPES:

- $|\vec{r}|$ varies with the angle of gradient vector.
- Angle α of \overrightarrow{r} varies with the angle of gradient vector.

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Straight Lines Circles General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

SOLUTION: From circle to more general shapes

CIRCLE:

- $|\overrightarrow{r}|$ is the same for every gradient vectors
- Angle α of \overrightarrow{r} is always $(\theta + \pi)$.

MORE GENERAL SHAPES:

- $|\overrightarrow{r}|$ varies with the angle of gradient vector.
- Angle α of \overrightarrow{r} varies with the angle of gradient vector.
- One θ can associated with more than one \overrightarrow{r}

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape Principle

Straight Lines Circles General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Figure 10: Generalized Shape: An angle θ can be associated with more than one vector \overrightarrow{r}

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape Principle Straight Lines Circles

General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape Principle Straight Lines Circles General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

GHT with Scaling and Rotation

Important Questions

3 How can we utilize the generalized relationship to detect a shape described by the shape's edge point?

Input

- **1** An sample shape, *S*, described edge points on the shape boundary.
- **2** An image contains shape S

Method for detecting generalized shapes

- **PHASE 1:** Describe the relationship between the gradient direction of edge points on *S* and a chosen point (referred to as **reference point**) c inside of *S*.
- **PHASE 2:** Detect instances of *S* in the input image.

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape Principle Straight Lines Circles General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

PHASE 1: Description of $\theta \rightarrow \overrightarrow{r}$

1 Chose a point \mathbf{c} inside of input shape S.

- This point will be considered as the center of the shape, like center of a circle.
- The purpose of $\ensuremath{\text{PHASE 2}}$ is to detect c
- 2 Build an loop-up table that maps θ (angle of gradient vectors) to \overrightarrow{r}
 - Name of this mapping: R-TABLE
 - One $\theta \rightarrow \text{multiple } \overrightarrow{r}$

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape Principle Straight Lines Circles

General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)
Table 1: R-Table illustration, $R(\theta)$

i	θ_i	Content of the entry in R-Table
0	θ_0	$\vec{r}_{0,1}; \vec{r}_{0,2};; \vec{r}_{0,N_0}$
1	θ_1	$\overrightarrow{r}_{1,1}; \overrightarrow{r}_{1,2};; \overrightarrow{r}_{1,N_1}$
2	θ_2	$\vec{r}_{2,1}; \vec{r}_{2,2};; \vec{r}_{2,N_2}$
M-1	θ_{M-1}	$\overrightarrow{r'}_{M-1,1}$; $\overrightarrow{r'}_{M-1,2}$;; $\overrightarrow{r'}_{M-1,N_{M-1}}$

- **1** Number of entries: M
- **2** θ_0 : smallest angle of gradient vectors $(-\pi)$
- **3** θ_{M-1} : largest angle of gradient vectors $(+\pi)$
- **4** N_i : number of vector \overrightarrow{r} associated with θ_i
 - N_i : maybe a zero, maybe more than 1

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Principle Straight Lines

Circles

General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Discretization of $\boldsymbol{\theta}$

- $\theta_{min} = -\pi$
- $\theta_{max} = +\pi$
- Range of $\theta: L_{\theta} = 2\pi$
- Number of table entries: M

•
$$\Rightarrow \Delta_{\theta} = \frac{2\pi}{M}$$

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Principle Straight Lines Circles General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

From *i*, index of R-TABLE's rows, to θ :

$$egin{aligned} & \theta \stackrel{\Delta}{=} \mathsf{dcm}_{idx2 heta}(i) \ & = heta_{min} + i imes \Delta_{ heta} + rac{\Delta_{ heta}}{2} \ & = -\pi + i imes \Delta_{ heta} + rac{\Delta_{ heta}}{2} \end{aligned}$$

From θ to *i*, index of R-TABLE's rows:

$$i \stackrel{\Delta}{=} \operatorname{cdm}_{\theta 2 i d x}(\theta)$$
$$= \operatorname{round} \left(\frac{\theta - \theta_{min}}{\Delta_{\theta}}\right)$$
$$= \operatorname{round} \left(\frac{\theta + \pi}{\Delta_{\theta}}\right)$$

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Principle Straight Lines

Circles

General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Input:

• c: a chosen point in previous step.

Algorithm 14 Generalized Hough Transforms: Building R-Table

1: Create **R-Table** R of M rows

2: for all edge point p on shape $S\ {\rm do}$

- 3: Compute vector $\overrightarrow{r} = \overrightarrow{c} \overrightarrow{p}$
- 4: Compute gradient vector \overrightarrow{g} at p
- 5: Compute angle θ of \overrightarrow{g}
- 6: Determine row $i = \mathsf{cdm}_{\theta 2idx}(\theta)$
- 7: Add \overrightarrow{r} to Row *i* of *R*

8: end for

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Principle

Straight Lines

Circles General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Principle Straight Lines

Circles

General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

GHT with Scaling and Rotation

PHASE 2: Detecting instances of S

- 1 Create 2D-Accumulator A for each possible of center $\mathbf{c}(x_c, y_c)$
- **2** Detect the largest cell in A

Algorithm 15 Detection of instances of S 1: Create a 2D-Accumulator, referred to as A2: Set 0 for all cells in the accumulator 3: for all edge point in $I_e(x, y)$ do Create vector $p = [x, -y]^T$ \triangleright negative y, because 4: y-axis: upright, x-axis: to-right Compute angle θ of the gradient at $I_e(x, y)$ 5: Determine R-TABLE's row: $l = cdm_{\theta 2idx}(\theta)$ 6: Get L ist L of vector \overrightarrow{r} from Row l 7: for all vector \overrightarrow{r}_i in L do 8: Compute vector $\overrightarrow{c} = \overrightarrow{p} + \overrightarrow{r}_i$ 9. Determine corresponding cell (x_c, y_c) in A from \overrightarrow{c} 10: $A(x_c, y_c) = A(x_c, y_c) + \Delta(x, y)$ 11: end for 12: 13: end for 14: Find the largest cell in $A(x_c, y_c)$, assume at (x_c^*, y_c^*)

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape Principle

Straight Lines

Circles

General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Question

How can detect a shape in that case described as follows?

Input:

- A sample of a shape S specified by the shape's edge points.
- An input image I(x, y)

Capability of the Detection:

 is able to detect instances S_i in the input I(x, y) in the case that S_i is a rotated and/or scaled version of S by an angle α and a scaling factor s?

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape Principle Straight Lines Circles General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

GHT without Scaling and Rotation

R-Table: $R(\theta)$ i is a multivalued vector function

- Input: θ , for example, $\theta = \theta_i$, See Table 1
- Output: zero or multiple vectors: $\overrightarrow{r}_{i,1}$; $\overrightarrow{r}_{i,2}$; ...; $\overrightarrow{r}_{i,N_i}$

Accumulator : $A(x_c, y_c)$ is a **2D-array**, indexed by the coordinates of the reference point c

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape Principle Straight Lines Circles

General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

What do Scaling and Rotation affect the shape S?

SCALING:

• Causes vector \overrightarrow{r} in R-Table scaled

ROTATION:

1 Causes angle of gradient rotated an angle α 2 Causes vector \overrightarrow{r} in R-Table rotated an angle α

ACCUMULATOR A:

- **1** Need two more parameters: rotation angle α and scaling factor s
- $\mathbf{2} \Rightarrow A(x_c, y_c, \alpha, s)$

R-TABLE $R(\theta)$:

Rebuilding is NOT required

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape Principle

Straight Lines Circles General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

SCALING:

Scaling-matrix:

$$M_s = \left[\begin{array}{cc} s_x & 0\\ 0 & s_y \end{array} \right]$$

Scaled vector \overrightarrow{r}^s of \overrightarrow{r} :

$$\overrightarrow{r}^s = M_s \times \overrightarrow{r}$$

Scaling and Accumulator

- Perform the scaling for all vectors in R-Table.
- Increase A for each scaling factor

J.

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Principle Straight Lines

Circles General Curves

Non-Analytic

Shape

A Special Case

Generalized Hough Transforms (GHT)

ROTATION:

Rotation-matrix for rotation angle α :

$$M_r = \begin{bmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{bmatrix}$$

Rotated vector \overrightarrow{r}^{rot} of \overrightarrow{r} :

$$\overrightarrow{r}^{rot} = M_r \times \overrightarrow{r}$$

Rotation and Accumulator

- Perform the rotation for all vectors in R-Table.
- Increase A for each rotation angle α , $0 \rightarrow 2\pi$ in general case.

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape

Principle Straight Lines

Circles

General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Steps to rotating the whole shape S by α

- **1** All R-Table's indices are increased by $-\alpha$, takes **modulo** by 2π after increasing.
 - θ : angle of gradient vector.
 - Compute $\theta^{rot} = (\theta \alpha)$ modulo 2π
 - \equiv Treat R-Table as a circular buffer, shift θ around the circular buffer an amount $-\alpha$

2 All vectors found at θ^r are rotated by α

Hough Transforms

LE Thanh Sach

What is it?

Analytic Shape Principle Straight Lines Circles

General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Algorithm 16 Detection of instances of S with scaling and rotation

- 1: Create a 4D-Accumulator, referred to as $A(x_c, y_c, r, s)$
- 2: Set 0 for all cells in the accumulator
- 3: for all edge point in $I_e(x,y)$ do
- 4: Create vector $p = [x, -y]^T$ \triangleright negative y, because y-axis: upright, x-axis: to-right
- 5: Obtain gradient vector \overrightarrow{g} at $I_e(x,y)$
- 6: Compute angle θ of \overrightarrow{g}
- 7: for all rotation angle α do
- 8: Compute $\theta^{rot} = (\theta \alpha)$ modulo 2π
- 9: Find R-TABLE's row: $l = \operatorname{cdm}_{\theta 2idx}(\theta^{rot})$
- 10: Get List L of vector \overrightarrow{r} from Row l
- 11: Compute rotation matrix $M_r(\alpha)$

LE Thanh Sach

What is it?

Analytic Shape Principle

Straight Lines

General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

r

H	lough	Tra	nsf	orm	s

LE Thanh Sach

What is it?

Analytic Shape Principle Straight Lines Circles General Curves

Non-Analytic Shape

A Special Case

Generalized Hough Transforms (GHT)

Alg	orithm 17	Detectio	on of	inst	ances of S with scaling and			
rota	ation							
12:	for all scaling factor s do							
13:		Compute scaling-matrix $M_s(s)$						
14:	for all vector \overrightarrow{r}_i in L do							
15:		Transform $\overrightarrow{r}_{i}^{trans} = M_r \times M_s \times \overrightarrow{r}_{i}$						
16:	Compute $\overrightarrow{c} = \overrightarrow{p} + \overrightarrow{r}_{i}^{trans}$							
17:	Determine (x_c, y_c) from \overrightarrow{c}							
18:	$A(x_c, y_c, r, s) = A(x_c, y_c, r, s) + \Delta(x, y)$							
19:		end for						
20:	enc	l for			\triangleright scaling factor s			
21:	end fo	r			\triangleright rotation angle α			
22:	end for				\triangleright edge point $I_e(x,y)$			
23:	Find the	largest	cell	in	$A(x_c,y_c,r,s)$, assume at			
	$(x_c^*, y_c^*, r^*,$	$s^*)$						