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Overview

1 Point Detection

2 Line Detection

3 Edge Detection

4 Laplacian of Gaussian (LoG)
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7.1.3

Point Detection

1 Filter the input image f(x, y) with Laplacian Hlap, i.e.,
compute g(x, y) = f(x, y) ∗Hlap(i, j)

2 Detect isolated points (x, y) if they satisfy:
|g(x, y)| ≥ T . Where, T is a threshold value.

Laplacian kernel Hlap:

Hlap =

 −1 −1 −1
−1 8 −1
−1 −1 −1


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7.1.4

Line Detection

1 Filter the input image f(x, y) with all following masks
for detecting horizontal, vertical, ±450-oriented lines.
This process results gi(x, y), i = 1..4. You can design
new masks for other lines with new orientation.

2 Chose a orientation i for point (x, y) by selecting the
largest gi(x, y), i = 1..4.

3 Do thresholding with a certain T (input) to obtain lines.

Some kernels: −1 −1 −1
2 2 2
−1 −1 −1

  −1 2 −1
−1 2 −1
−1 2 −1


Horizontal Vertical −1 −1 2
−1 2 −1
2 −1 −1

  2 −1 −1
−1 2 −1
−1 −1 2


+450 −450
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7.1.5

Edge Detection

Definition

Edge is a set of connected pixels that lie on the boundary
between two regions.

Properties

1 There is ”meaningful” transitions in gray-levels at edge.

2 So, first-order and second-order derivatives can be used
to detect the transition.



Edge Detection

LE Thanh Sach

Point Detection

Line Detection

Edge Detection

Laplacian of
Gaussian (LoG)

7.1.6

Edge Detection

Examples of Derivatives: image, a line profile, first and
second-order derivatives.
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7.1.7

Edge Detection

Model of edges:

1 Left: Clear edge or Ideal edge, ideally represented as
a step

2 Middle: Blurred edge, ideally represented as a ramp

3 Right: A blurred bright edge, ideally represented as a
roof.
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7.1.8

Edge Detection

Edge with first-order derivatives

Edge consists of points where the module of the gradient
vector is greater than a threshold.

• The gradient vector is perpendicular with the local
edge passing that point
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7.1.9

Edge Detection

Edge with second-order derivatives

Edge consists of zero-crossing points in image filtered with
second-order derivatives.

• Second-order derivatives create one positive response
and another negative one for ramp edges.
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7.1.10

Edge Detection with noise

• Rows: Row 1: no noise; Row 2: with Gaussian noise
(µ = 0, σ = 0)

• Cols: Col 1: a line profile; Col 2: Fist-order derivative;
Col 3: Second-order derivative
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7.1.11

Edge Detection with noise

• Rows: Row 1: with Gaussian noise (µ = 0, σ = 0.1);
Row 2: with Gaussian noise (µ = 0, σ = 1.0)

• Cols: Col 1: a line profile; Col 2: Fist-order derivative;
Col 3: Second-order derivative
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7.1.12

Edge Detection with noise

Properties

• Second-order derivative is more sensitive to noise
compared with first-order derivative.

• However,
• First-order derivatives provide thick edges
• Second-order derivatives provide thin edges (via,

zero-crossing)
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7.1.13

Edge Detection and Laplacian

Question

Laplacian can provide the discontinuity in gray-levels. Why
is it not used in edge detection?

Reasons

1 As a second-order derivative, it is unacceptably sensitive
to noise

2 The magnitude of Laplacian provides double edges (one
for positive and another one for negative response)

3 Laplacian can not provide edge direction

Therefore, Laplacian is directly suitable for sharpening
images only.
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7.1.14

Edge Detection and Laplacian

• Laplacian can provide thin edges via zeros-crossing
detection. However, it is sensitive to noise.

• What will be happened if we remove noise before taking
Laplician and then finding zeros-crossing?

Laplacian in edge detection

1 Perform noise removal will a Gaussian low-pass filter.
The input image will be blurred.

2 Apply Laplacian to the resulting image.

3 Detect zero-crossing points to obtain edge points.

Laplacian of Gaussian (LoG)

Step 1 and 2 in the above algorithm is equivalent to
filtering image with a LoG mask
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7.1.15

Laplacian of Gaussian (LoG)

A Gaussian function G(x, y)

G(x, y) = e−
x2+y2

2σ2

• σ : standard deviation. This parameter decides the
degree of blurring in output image, if the input
image is convoluted with this function
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7.1.16

Laplacian of Gaussian (LoG)

Laplacian of Gaussian (LoG)

∇2G(r) =

[
x2 + y2 − 2σ2

σ4

]
e
−
r2

2σ2

• LoG ≡ Laplacian of function G(x, y)

• LoG ≡ ∂2G(x,y)
∂x2 + ∂2G(x,y)

∂y2
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7.1.17

Laplacian of Gaussian (LoG)
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7.1.18

Laplacian of Gaussian (LoG)

Properties

1 Other name: Mexican hat, because of its shape

2 Zero-crossing point in LoG: x2 + y2 = 2σ2

3 Radius from the origin to zero-crossing point: r =
√
2σ

4 Kernel of LoG given above: just an example. It can be
approximated by any size and any coefficients.

5 Sum of all coefficients of the kernel must be 0

Generation of LoG’s kernel

How can you generate LoG’s kernel?
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7.1.19

Laplacian of Gaussian (LoG)

Properties: Linearity

g(x, y) =
[
∇2G(x, y)

]
∗ f(x, y)

= ∇2 [G(x, y) ∗ f(x, y)]
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7.1.20

Marr-Hildreth Algorithm

Marr-Hildreth Algorithm

1 Filter the input image f(x, y) with Gaussian low-pass
filter by kernel size n× n to obtain the output g(x, y).

2 Compute Laplacian of g(x, y) to obtain gL(x, y)

3 Find zero-crossing points in gL(x, y)

LoG

Step 1 and 2 can be implemented as applying LoG on the
input image.
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7.1.21

Marr-Hildreth Algorithm

Power of Marr-Hildreth Algorithm

Marr-Hildreth Algorithm can remedy the following problems
in edge detection:

1 Intensity changes are not independent of image scale ⇒
use different kernel’ size.

2 Edges are sensitive to noise, especially true for
second-order derivative ⇒ use Gaussian low-pass filter

Questions

1 How can you obtain the kernel’s size?

2 How can you detect zero-crossing points?
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7.1.22

Marr-Hildreth Algorithm

How can you obtain the kernel’s size?

• Volume of a Gaussian function inside of circle
radius = 3σ is 99.7%

• ⇒ Kernel size n× n, where n an odd numer ≥ 6σ
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7.1.23

Marr-Hildreth Algorithm

How can you detect zero-crossing points?

1 Perform thresholding of the magnitude of LoG image,
i.e. |gl(x, y)|, with a value T .

gl(x, y) =


−1 if (gl(x, y) < 0) and |gl(x, y)| > T

1 if (gl(x, y) > 0) and |gl(x, y)| > T

0 ortherwise

2 Apply a mask 3× 3 at each pixel on gl(x, y).
NW N NE

W C E

SW S SE

3 Detect the difference on the sign at opposing corners,
i.e., (W, E), (N, S), (NW, SE), and (SW, NE).

4 If any pair of corners results a difference on the sign,
then gl(x, y) is an edge point.
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7.1.24

Laplacian of Gaussian (LoG): Illustration

Figure: Original image
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7.1.25

Laplacian of Gaussian (LoG): Illustration

Figure: Original image
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7.1.26

Laplacian of Gaussian (LoG): Illustration

(a) (b)

Figure: Marr-Hildreth Algorithm: (a): Result of Step 1 and 2,
(b): Zero-crossing of (a), Threshold = 0

• Step 1 and 2: σ = 4, n = 25 (kernel’s size: 25× 25)

• Low threshold ⇒ many edge points.
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7.1.27

Laplacian of Gaussian (LoG): Illustration

(a) (b)

Figure: Marr-Hildreth Algorithm: (a): Result of Step 1 and 2, (b):
Zero-crossing of (a), Threshold = 4% of maximum value in (a)

• Step 1 and 2: σ = 4, n = 25 (kernel’s size: 25× 25)

• Larger threshold ⇒ provide strong edge only
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7.1.28

Canny Edge Detection

Canny Edge Detection Algorithm

1 Smooth the input image with Gaussian low-pass filter

2 Compute the gradient magnitude angle images

3 Apply nonmaxima suppression to the gradient
magnitude image.

4 Use double thresholding and connectivity analysis to
detect and link edges
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7.1.29

Canny Edge Detection

Step 1: Smooth the input image with Gaussian low-pass
filter

1 Smooth the input image with Gaussian low-pass filter

2 Compute the gradient magnitude angle images

3 Apply nonmaxima suppression to the gradient
magnitude image.

4 Use double thresholding to obtain strong and weak edge
masks

5 Analyze the connectivity to detect and link edges
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7.1.30

Canny Edge Detection

Step 1: Smooth the input image with Gaussian low-pass
filter

G(x, y) = e−
x2+y2

2σ2

fs(x, y) = f(x, y) ∗G(x, y)

• fs(x, y) : a smoothed version of f(x, y)

• σ : decides the degree of smoothing

• fs(x, y) : Gaussian noise has been removed
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7.1.31

Canny Edge Detection

Step 2: Compute the gradient magnitude angle images

• Compute gx(x, y) and gy(x, y)

gx(x, y) = fs(x, y) ∗Hx(x, y)

gy(x, y) = fs(x, y) ∗Hy(x, y)

• Hx(x, y), Hy(x, y): any first-order derivative kernels,
e.g., ”standard” approximations kernels, Sobel, Roberts,
Prewitts, etc.

• Compute gradient magnitude and angle images

M(x, y) =

[
gx(x, y)
gy(x, y)

]
α(x, y) = tan−1

[
gy(x, y)

gx(x, y)

]
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7.1.32

Canny Edge Detection

Step 3: Apply nonmaxima suppression to the gradient
magnitude image.

The underlying idea of nonmaxima suprression

if a point is not a local maxima, then supress (remove, stop,
etc) it.

• Edges will pass points that are local maxima in
gradient magnitude image, ie., M(x, y).

• ⇒ Remove (supress) points that are not local maxima.

• ≡ nonmaxima suprression



Edge Detection

LE Thanh Sach

Point Detection

Line Detection

Edge Detection

Laplacian of
Gaussian (LoG)

7.1.33

Canny Edge Detection

Step 3: Apply nonmaxima suppression to the gradient
magnitude image.

Questions

What does local mean?

• local ≡ local points involving in edge.

• for a point (x, y) in M(x, y), which neighbor points
are edge local points?

• ⇒ need gradient angle

Gradient vector at a point is perpendicular to local edge at
that point.
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7.1.34

Canny Edge Detection

Step 3: Apply nonmaxima suppression to the gradient
magnitude image.

1 Discrete gradient angle values into small rangles.

2 Find direction dk that is closest to α(x, y)

3 Find local neighbors on edge using dk, referred to as N1

and N2

4 Compute nonmaxima suppressed image gN (x, y)

gN (x, y) =

{
0 if [M(x, y) < N1] & [M(x, y) < N2]

M(x, y) otherwise
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7.1.35

Canny Edge Detection

Step 3: Apply nonmaxima suppression to the gradient
magnitude image.

Figure: Demonstration for 4 directions: horizontal, vertical, ±450
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7.1.36

Canny Edge Detection

Step 4: Use double thresholding to obtain strong and weak
edge masks

1 Do thresholding with high and low threshold value TH
and TL respectively.

gNH(x, y) = gN (x, y) ≥ TH
gNL(x, y) = gN (x, y) ≥ TL

2 Eliminate points in gNL(x, y) that has been indicated in
gNH(x,y)

gNL(x, y) = gNL(x, y)− gNH(x, y)

• gNH(x, y): strong edge
• gNL(x, y): weak edge
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7.1.37

Canny Edge Detection

Step 5: Analyze connectivity and to detect and link edges

1 Create an edge map that marks all non-zeros in
gNH(x, y) as valid edge points.

2 For each pixel p that is non-zeros in gNH(x, y), do
• Find all non-zeros pixels in gNL(x, y) that are

connected to p via 4− or 8−connectivity, mark
corresponding points in edge map as valid pixels.

• edge map may contain edges thicker than 1 pixel.

• Apply edge-thinning algorithm to create thinner edge
map, if needed.
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7.1.38

Canny Edge Detection: Illustration

(a) (b)

Figure: Edge detection (a): Original image, (b): Thresholded
gradient magnitude image - thick edge



Edge Detection

LE Thanh Sach

Point Detection

Line Detection

Edge Detection

Laplacian of
Gaussian (LoG)

7.1.39

Canny Edge Detection: Illustration

(a) (b)

Figure: Edge detection (a): Marr-Hildreth Method, (b): Canny
method - better
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