[Local Processing on](#page-59-0) Images

LE Thanh Sach

[Local processing](#page-3-0)

[Linear processing](#page-11-0)

[Correlation](#page-12-0)

[Convolution](#page-18-0)

[Linear Filtering](#page-28-0)

[Popular Linear Filter](#page-30-0) [Convolution's Properties](#page-38-0)

Convolution's [implementation](#page-47-0)

Chapter 3 Local Processing on Images

Image Processing and Computer Vision

LE Thanh Sach Faculty of Computer Science and Engineering Ho Chi Minh University of Technology, VNU-HCM

Overview

1 [Local processing](#page-3-0)

2 [Linear processing](#page-11-0)

[Correlation](#page-12-0) [Convolution](#page-18-0) [Linear Filtering](#page-28-0) [Popular Linear Filter](#page-30-0) [Convolution's Properties](#page-38-0) [Convolution's implementation](#page-47-0)

[Local Processing on](#page-0-0) Images

LE Thanh Sach

[Local processing](#page-3-0)

[Linear processing](#page-11-0)

[Correlation](#page-12-0)

[Convolution](#page-18-0)

[Linear Filtering](#page-28-0)

[Popular Linear Filter](#page-30-0) [Convolution's Properties](#page-38-0)

Sources of slides

Sources

This presentation uses figures, slides and information from the following sources:

- **1** Rafael C. Gonzalez, Richard E. Woods, "Digital Image Processing["], 2^{nd} Editions.
- **2** Maria Petrou and Costas Petrou, "Image Processing: The Fundamentals", 2^{nd} Editions.
- ³ Slides of Course "CS 4640: Image Processing Basics", from Utah University.

[Local Processing on](#page-0-0) Images

LE Thanh Sach

[Local processing](#page-3-0)

[Linear processing](#page-11-0)

[Correlation](#page-12-0)

[Convolution](#page-18-0)

[Linear Filtering](#page-28-0)

[Popular Linear Filter](#page-30-0) [Convolution's Properties](#page-38-0)

[Local Processing on](#page-0-0) Images

LE Thanh Sach

[Local processing](#page-3-0)

[Linear processing](#page-11-0)

[Correlation](#page-12-0)

[Convolution](#page-18-0)

[Linear Filtering](#page-28-0)

[Popular Linear Filter](#page-30-0) [Convolution's Properties](#page-38-0)

Convolution's [implementation](#page-47-0)

What is local processing?

Definition

Local processing is an image operation where each pixel value $I(u, v)$ is changed by a **function** of the intensities of pixels in a **neighborhood** of the pixel (u, v) .

[Local Processing on](#page-0-0) Images

LE Thanh Sach

ocal processi

Example

• An image $I(u, v)$; a pixel (u, v) and its neighborhood of 3×3 pixels

Figure: Example of neighborhood

[Local Processing on](#page-0-0) Images

LE Thanh Sach

[Local processing](#page-3-0)

[Linear processing](#page-11-0) [Correlation](#page-12-0) [Convolution](#page-18-0) [Linear Filtering](#page-28-0) [Popular Linear Filter](#page-30-0)

[Convolution's Properties](#page-38-0)

Example

Examples of some processing functions

- Linear functions
	- **1** Averaging function
	- ² Shifting function
	- **8** Gaussian function
	- **4** Edge detecting function
- Non-linear functions
	- **1** Median function
	- **2** Min function
	- **3** Max function

[Local Processing on](#page-0-0) Images

LE Thanh Sach

cal process

[Linear processing](#page-11-0)

[Correlation](#page-12-0)

[Convolution](#page-18-0)

[Linear Filtering](#page-28-0)

[Popular Linear Filter](#page-30-0) [Convolution's Properties](#page-38-0)

• Example of an averaging function

 $u-1$ u $u+1$

$$
I'(u, v) = \frac{1}{9} \sum_{i=-1}^{1} \sum_{j=-1}^{1} I(u + i, v + j)
$$

[Local Processing on](#page-0-0) Images

LE Thanh Sach

[Local processing](#page-3-0)

• Example of an averaging function

Input image Output image

• The output image is obtained by averaging the input with neighborhood of 9×9 pixels.

[Local Processing on](#page-0-0) Images

LE Thanh Sach

Local processir

• Example of an averaging function

Input image **Output image** blurred, smoothed

$$
I'(u, v) = \frac{1}{9 \times 9} \sum_{i=-4}^{4} \sum_{j=-4}^{4} I(u + i, v + j)
$$

[Local Processing on](#page-0-0) Images

LE Thanh Sach

[Local processing](#page-3-0)

• Example of a median function (a non-linear function)

Input image Output image Noises have been removed

• The output image is obtained by computing the median value of a set of pixels in a neighborhood of 3×3 pixels.

[Local Processing on](#page-0-0) Images

LE Thanh Sach

Local processing

[Local Processing on](#page-0-0) Images

LE Thanh Sach

[Local processing](#page-3-0)

[Linear processing](#page-11-0)

[Correlation](#page-12-0)

[Convolution](#page-18-0)

[Linear Filtering](#page-28-0)

[Popular Linear Filter](#page-30-0)

[Convolution's Properties](#page-38-0) Convolution's

[implementation](#page-47-0)

Linear processing function

Mean function

Consider an averaging function on square window. In general, the window can have different size of each dimension. The output of the averaging is determined by.

$$
I'(u, v) = \frac{1}{(2r+1) \times (2r+1)} \sum_{i=-r}^{r} \sum_{j=-r}^{r} I(u+i, v+j)
$$

 $I^{'}(u,v)$ can be written as

$$
I^{'}(u,v) = \sum_{i=-r}^{r} \sum_{j=-r}^{r} I(u+i, v+j).H_{corr}(i, j)
$$

[Local Processing on](#page-0-0) Images

LE Thanh Sach

[Local processing](#page-3-0)

[Linear processing](#page-11-0)

[Correlation](#page-12-0)

[Convolution](#page-18-0)

[Linear Filtering](#page-28-0)

[Popular Linear Filter](#page-30-0) [Convolution's Properties](#page-38-0)

Mean function

- \bullet H_{corr} is a matrix of size $(2r+1) \times (2r+1)$
- $2\ \ H_{corr} = \frac{1}{(2r+1)\times(2r+1)} M_{ones}$ and,
- 3 M_{ones} : is an matrix of size $(2r+1) \times (2r+1)$ containing value 1 for all elements.

Example

Matrix for averaging pixels in a neighborhood of size 5×5 , i.e., $r = 2$.

$$
H_{corr} = \frac{1}{5 \times 5} \times \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}
$$

[Local Processing on](#page-0-0) Images

LE Thanh Sach

[Local processing](#page-3-0)

[Linear processing](#page-11-0)

[Correlation](#page-12-0)

[Convolution](#page-18-0)

[Linear Filtering](#page-28-0)

[Popular Linear Filter](#page-30-0) [Convolution's Properties](#page-38-0)

From averaging function to others

A way to construct other linear processing functions

If one changes H_{corr} to other kinds of matrix, he obtains other linear function.

Example

Edge detecting function (Sobel)

$$
H_{corr} = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix} \quad H_{corr} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}
$$

Shifting function

$$
H_{corr} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}
$$

[Local Processing on](#page-0-0) Images

LE Thanh Sach

[Local processing](#page-3-0)

[Linear processing](#page-11-0)

[Correlation](#page-12-0)

[Convolution](#page-18-0)

[Linear Filtering](#page-28-0)

[Popular Linear Filter](#page-30-0) [Convolution's Properties](#page-38-0)

Correlation

Definition

Input data:

1 Input image, $I(u, v)$

• Matrix $H_{corr}(i, j)$ of size $(2r + 1) \times (2r + 1)$. In general, the size on two dimensions maybe different.

Correlation is defined as follows:

$$
I_{corr}'(u, v) = \sum_{i = -r}^{r} \sum_{j = -r}^{r} I(u + i, v + j). H_{corr}(i, j)
$$

[Local Processing on](#page-0-0) Images

LE Thanh Sach

[Local processing](#page-3-0)

[Linear processing](#page-11-0)

[Correlation](#page-12-0)

[Convolution](#page-18-0)

[Linear Filtering](#page-28-0)

[Popular Linear Filter](#page-30-0) [Convolution's Properties](#page-38-0)

Correlation: How does it works?

 \overline{u}

 \overline{H}

[Local Processing on](#page-0-0) Images

LE Thanh Sach

[Local processing](#page-3-0)

[Linear processing](#page-11-0)

[Correlation](#page-12-0)

[Convolution](#page-18-0)

٥ï

[Linear Filtering](#page-28-0)

[Popular Linear Filter](#page-30-0)

[Convolution's Properties](#page-38-0)

Convolution's [implementation](#page-47-0)

Figure: Method for computing the correlation for one pixel

 $\tilde{\boldsymbol{u}}$

Correlation: How does it works?

A computation process

For each pixel (u, v) on the output image, do:

- **1 Place** matrix H_{corr} centered at the corresponding pixel, i.e., pixel (u, v) , on the input image
- **2 Multiply** coefficients in matrix H_{corr} with the underlying pixels on the input image.
- **3** Compute the sum of all the resulting products in the previous step.
- \boldsymbol{A} Assign the sum to the $I^{'}(u,v) .$

[Local Processing on](#page-0-0) Images

LE Thanh Sach

[Local processing](#page-3-0)

[Linear processing](#page-11-0)

[Correlation](#page-12-0)

[Convolution](#page-18-0)

[Linear Filtering](#page-28-0)

[Popular Linear Filter](#page-30-0) [Convolution's Properties](#page-38-0)

Convolution

Definition

Input data:

- **1** Input image, $I(u, v)$
- **2** Matrix H_{conv} of size $(2r + 1) \times (2r + 1)$. In general, the size on two dimensions maybe different.

Convolution is defined as follows:

$$
I'_{conv}(u, v) = \sum_{i=-r}^{r} \sum_{j=-r}^{r} I(u-i, v-j). H_{conv}(i, j)
$$

[Local Processing on](#page-0-0) Images

LE Thanh Sach

[Local processing](#page-3-0) [Linear processing](#page-11-0)

[Correlation](#page-12-0)

[Convolution](#page-18-0)

[Linear Filtering](#page-28-0)

[Popular Linear Filter](#page-30-0) [Convolution's Properties](#page-38-0)

Convolution

Natation

- Operator * is used to denote the convolution between image I and matrix H_{conv}
- That is

$$
I'_{conv}(u, v) = I * H_{conv}
$$

=
$$
\sum_{i=-r}^{r} \sum_{j=-r}^{r} I(u-i, v-j). H_{conv}(i, j)
$$

[Local Processing on](#page-0-0) Images

LE Thanh Sach

[Local processing](#page-3-0)

[Linear processing](#page-11-0)

[Correlation](#page-12-0)

[Convolution](#page-18-0)

[Linear Filtering](#page-28-0)

[Popular Linear Filter](#page-30-0) [Convolution's Properties](#page-38-0)

Convolution

[Local Processing on](#page-0-0) Images

LE Thanh Sach

[Local processing](#page-3-0)

[Linear processing](#page-11-0)

[Correlation](#page-12-0)

[Convolution](#page-18-0)

[Linear Filtering](#page-28-0)

[Popular Linear Filter](#page-30-0) [Convolution's Properties](#page-38-0)

Convolution's [implementation](#page-47-0)

Attention!

- When I is an gray image, both of I and H_{conv} are matrices.
- However, $I * H_{conv}$ is convolution between I and H_{conv} , instead of matrix multiplication!

Mathematics

$$
I'_{conv}(u, v) = \sum_{i=-r}^{r} \sum_{j=-r}^{r} I(u-i, v-j). H_{conv}(i, j)
$$

$$
I'_{corr}(u, v) = \sum_{i=-r}^{r} \sum_{j=-r}^{r} I(u+i, v+j). H_{corr}(i, j)
$$

[Local Processing on](#page-0-0) Images

LE Thanh Sach

[Local processing](#page-3-0) [Linear processing](#page-11-0) [Correlation](#page-12-0) [Convolution](#page-18-0)

[Linear Filtering](#page-28-0)

[Popular Linear Filter](#page-30-0) [Convolution's Properties](#page-38-0)

Convolution's [implementation](#page-47-0)

In mathematics, convolution and correlation are different in the sign of i and j inside of $I(u+i, v+j)$ and $I(u-i, v-j)$

Convolution to Correlation

• Let
$$
s = -i
$$
 and $t = -j$

• We have

$$
I'_{conv}(u, v) = \sum_{i=-r}^{r} \sum_{j=-r}^{r} I(u-i, v-j) \cdot H_{conv}(i, j)
$$

=
$$
\sum_{i=-r}^{r} \sum_{j=-r}^{r} I(u+s, v+t) \cdot H_{conv}(-s, -t)
$$

 $H_{conv}(-s, -t)$ from $H_{conv}(i, i)$

 $H_{conv}(-s, -t)$ can be obtained from $H_{conv}(i, j)$ by either

- Flipping $H_{conv}(i, j)$ on x and then on y axis
- Rotating $H_{conv}(i, j)$ around its center 180^0

[Local Processing on](#page-0-0) Images

LE Thanh Sach

[Linear processing](#page-11-0)

[Correlation](#page-12-0)

[Convolution](#page-18-0)

[Linear Filtering](#page-28-0)

[Popular Linear Filter](#page-30-0) [Convolution's Properties](#page-38-0)

Example

Demonstration of rotation and flipping.

$$
H = \begin{bmatrix} \textcircled{1} & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \quad H_{flipped.x} = \begin{bmatrix} 3 & 2 & \textcircled{1} \\ 6 & 5 & 4 \\ 9 & 8 & 7 \end{bmatrix}
$$

 $H_{flipped_x}$ is obtained from H by flipping H on x-axis. After flipping $H_{flipped.x}$ around y axis

$$
H_{flippedxy} = \begin{bmatrix} 9 & 8 & 7 \\ 6 & 5 & 4 \\ 3 & 2 & 0 \end{bmatrix}
$$

 $H_{flipped_xy}$ can obtained from H by rotating H 180^0 around H 's center.

[Local Processing on](#page-0-0) Images

LE Thanh Sach

Correlation to Convolution

• Let
$$
s = -i
$$
 and $t = -j$

• We have

$$
I'_{corr}(u, v) = \sum_{i=-r}^{r} \sum_{j=-r}^{r} I(u+i, v+j) . H_{corr}(i, j)
$$

=
$$
\sum_{i=-r}^{r} \sum_{j=-r}^{r} I(u-s, v-t) . H_{corr}(-s, -t)
$$

 $H_{corr}(-s, -t)$ from $H_{corr}(i, i)$

 $H_{corr}(-s, -t)$ can be obtained from $H_{corr}(i, j)$ by either

- Flipping $H_{corr}(i, j)$ on x and then on y axis
- Rotating $H_{corr}(i, j)$ around its center 180^0

[Local Processing on](#page-0-0) Images

LE Thanh Sach

[Local processing](#page-3-0) [Linear processing](#page-11-0)

[Correlation](#page-12-0)

[Convolution](#page-18-0)

[Linear Filtering](#page-28-0)

[Popular Linear Filter](#page-30-0) [Convolution's Properties](#page-38-0)

Convolution-Correlation Conversion

[Local Processing on](#page-0-0) Images

LE Thanh Sach

[Local processing](#page-3-0)

[Linear processing](#page-11-0)

[Correlation](#page-12-0)

[Convolution](#page-18-0)

[Linear Filtering](#page-28-0)

[Popular Linear Filter](#page-30-0) [Convolution's Properties](#page-38-0)

Convolution's [implementation](#page-47-0)

Relationship

- **1** Convolution can be computed by correlation and vice versa.
- **2** For example, convolution can be computed by correlation by: first, (a) rotating the matrix 180^0 and then (b) computing the correlation between the rotated matrix with the input image.

Convolution: How does it works?

A Computation process

 \bf{D} Rotate matrix H_{conv} around its center 180^0 to obtain H_{corr}

For each pixel (u, v) on the output image, do:

- **1 Place** matrix H_{corr} centered at the corresponding pixel, i.e., pixel (u, v) , on the input image
- **2** Multiply coefficients in matrix H_{corr} with the underlying pixels on the input image.
- **3 Compute** the sum of all the resulting products in the previous step.
- \boldsymbol{A} Assign the sum to the $I^{'}(u,v)$.

[Local Processing on](#page-0-0) Images

LE Thanh Sach

[Local processing](#page-3-0) [Linear processing](#page-11-0) [Correlation](#page-12-0)

[Convolution](#page-18-0)

[Linear Filtering](#page-28-0)

[Popular Linear Filter](#page-30-0) [Convolution's Properties](#page-38-0)

MATLAB's function

Example

MATLAB's functions supports correlation and convolution

- Ω corr 2
- 2 xcorr2
- ³ conv₂
- **A** filter2
- 5 imfilter

MATLAB's function supports creating special matrix

0 fspecial

[Local Processing on](#page-0-0) Images

LE Thanh Sach

[Local processing](#page-3-0)

[Linear processing](#page-11-0)

[Correlation](#page-12-0)

[Convolution](#page-18-0)

[Linear Filtering](#page-28-0)

[Popular Linear Filter](#page-30-0) [Convolution's Properties](#page-38-0)

Linear Filtering

Definition

Linear filtering is a process of applying the **convolution or** the correlation between an matrix H to input image $I(u, v)$.

[Local Processing on](#page-0-0) Images

LE Thanh Sach

[Local processing](#page-3-0)

[Linear processing](#page-11-0)

[Correlation](#page-12-0)

[Convolution](#page-18-0)

[Linear Filtering](#page-28-0)

[Popular Linear Filter](#page-30-0) [Convolution's Properties](#page-38-0)

Filter's kernel

Definition

In filtering, matrix H is called the filter's kernel.

Other names of H

- Filter's kernel
- Window
- Mask
- Template
- Matrix
- Local region

[Local Processing on](#page-0-0) Images

LE Thanh Sach

[Local processing](#page-3-0)

[Linear processing](#page-11-0)

[Correlation](#page-12-0)

[Convolution](#page-18-0)

[Linear Filtering](#page-28-0)

[Popular Linear Filter](#page-30-0) [Convolution's Properties](#page-38-0)

Popular Linear Filter: Mean filter

Example

Mean filter's kernel

• General case:

$$
H_{corr} = \frac{1}{(2r+1)^2} \times \begin{bmatrix} 1 & 1 & \dots & 1 & 1 \\ 1 & 1 & \dots & 1 & 1 \\ \dots & \dots & \dots & \dots & \dots \\ 1 & 1 & \dots & 1 & 1 \\ 1 & 1 & \dots & 1 & 1 \end{bmatrix}_{(2r+1)\times(2r+1)}
$$

[Local Processing on](#page-0-0) Images

LE Thanh Sach

[Local processing](#page-3-0)

[Linear processing](#page-11-0)

[Correlation](#page-12-0)

[Convolution](#page-18-0)

[Linear Filtering](#page-28-0)

[Popular Linear Filter](#page-30-0)

[Convolution's Properties](#page-38-0)

Popular Linear Filter: Mean filter

[Local Processing on](#page-0-0) Images

LE Thanh Sach

 B_K

[Popular Linear Filter](#page-30-0)

[Convolution's Properties](#page-38-0)

Popular Linear Filter: Mean filter

[Local Processing on](#page-0-0) Images

LE Thanh Sach

Filtered with H's size: 5×5 Filtered with H's size: 11×11

Popular Linear Filter: Gaussian filter

2D-Gaussian Function

$$
G(x, y, \sigma) = \frac{1}{2\pi\sigma^2} exp(-\frac{x^2 + y^2}{2\sigma^2})
$$

Figure: 2D-Gaussian Function

[Local Processing on](#page-0-0) Images

LE Thanh Sach

[Local processing](#page-3-0)

[Linear processing](#page-11-0)

[Correlation](#page-12-0)

[Convolution](#page-18-0)

[Linear Filtering](#page-28-0)

[Popular Linear Filter](#page-30-0)

[Convolution's Properties](#page-38-0)

Popular Linear Filter: Gaussian filter

Example

- H's size is 3×3
- $\sigma = 0.5$

•
$$
H
$$
's size is 5×5

$$
\sigma = 0.5
$$
\n
$$
H = \begin{bmatrix}\n0.0000 & 0.0000 & 0.0002 & 0.0000 & 0.0000 \\
0.0000 & 0.0113 & 0.0837 & 0.0113 & 0.0000 \\
0.0002 & 0.0837 & 0.6187 & 0.0837 & 0.0002 \\
0.0000 & 0.0113 & 0.0837 & 0.0113 & 0.0000 \\
0.0000 & 0.0000 & 0.0002 & 0.0000 & 0.0000\n\end{bmatrix}
$$

[Local Processing on](#page-0-0) Images

LE Thanh Sach

[Local processing](#page-3-0)

[Linear processing](#page-11-0)

[Correlation](#page-12-0)

[Convolution](#page-18-0)

[Linear Filtering](#page-28-0)

[Popular Linear Filter](#page-30-0)

[Convolution's Properties](#page-38-0)

Popular Linear Filter: Gaussian filter

[Local Processing on](#page-0-0) Images

LE Thanh Sach

[Local processing](#page-3-0)

[Linear processing](#page-11-0)

[Correlation](#page-12-0)

[Convolution](#page-18-0)

Ш

[Linear Filtering](#page-28-0)

[Popular Linear Filter](#page-30-0)

[Convolution's Properties](#page-38-0)

Convolution's [implementation](#page-47-0)

Filtered with Mean filter Filtered with Gaussian filter H 's size: 11×11 H 's size: 11×11 $\sigma = 0.5$

 a a a a a a a a a

||||||||||

Popular Linear Filter: Shifting filter

Example

• In order to shift pixel (u, v) to $(u - 2, v + 2)$, use the following kernel

$$
H = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}
$$

[Local Processing on](#page-0-0) Images

LE Thanh Sach

[Local processing](#page-3-0)

[Linear processing](#page-11-0)

[Correlation](#page-12-0)

[Convolution](#page-18-0)

[Linear Filtering](#page-28-0)

[Popular Linear Filter](#page-30-0)

[Convolution's Properties](#page-38-0)

Popular Linear Filter: Shifting filter

[Local Processing on](#page-0-0) Images

LE Thanh Sach

3.38

Commutativity:

$$
I*H=H*I
$$

Meaning

- **1** This means that we can think of the image as the kernel and the kernel as the image and get the same result.
- **2** In other words, we can leave the image fixed and slide the kernel or leave the kernel fixed and slide the image.

[Local Processing on](#page-0-0) Images

LE Thanh Sach

[Local processing](#page-3-0)

[Linear processing](#page-11-0)

[Correlation](#page-12-0)

[Convolution](#page-18-0)

[Linear Filtering](#page-28-0)

[Popular Linear Filter](#page-30-0)

[Convolution's Properties](#page-38-0)

Associativity:

$$
(I * H_1) * H_2 = I * (H_1 * H_2)
$$

Meaning

1 This means that we can apply H_1 to I followed by H_2 , or we can convolve the kernel $H_2 * H_1$ and then apply the resulting kernel to I .

[Local Processing on](#page-0-0) Images

LE Thanh Sach

[Local processing](#page-3-0)

[Linear processing](#page-11-0)

[Correlation](#page-12-0)

[Convolution](#page-18-0)

[Linear Filtering](#page-28-0)

[Popular Linear Filter](#page-30-0)

[Convolution's Properties](#page-38-0)

Linearity:

$$
(\alpha.I) * H = \alpha.(I * H)
$$

$$
(I_1 + I_2) * H = I_1 * H + I_2 * H
$$

Meaning

1 This means that we can multiply an image by a constant before or after convolution, and we can add two images before or after convolution and get the same results.

[Local Processing on](#page-0-0) Images

LE Thanh Sach

[Local processing](#page-3-0)

[Linear processing](#page-11-0)

[Correlation](#page-12-0)

[Convolution](#page-18-0)

[Linear Filtering](#page-28-0)

[Popular Linear Filter](#page-30-0)

[Convolution's Properties](#page-38-0)

Shift-Invariance

Let S be an operator that shifts an image I: $S(I)(u, v) = I(u + a, v + b)$

Then,

$$
S(I * H) = S(I) * H
$$

Meaning

 \bigcap This means that we can convolve I and H and then shift the result, or we can shift I and then convolve it with H

[Local Processing on](#page-0-0) Images

LE Thanh Sach

[Local processing](#page-3-0)

[Linear processing](#page-11-0)

[Correlation](#page-12-0)

[Convolution](#page-18-0)

[Linear Filtering](#page-28-0)

[Popular Linear Filter](#page-30-0)

[Convolution's Properties](#page-38-0)

[Local Processing on](#page-0-0) Images

LE Thanh Sach

[Local processing](#page-3-0)

[Linear processing](#page-11-0)

[Correlation](#page-12-0)

[Convolution](#page-18-0)

[Linear Filtering](#page-28-0)

[Popular Linear Filter](#page-30-0)

[Convolution's Properties](#page-38-0)

Convolution's [implementation](#page-47-0)

Separability

A kernel H is called separable if it can be broken down into the convolution of two kernels:

$$
H = H_1 * H_2
$$

More generally, we might have:

$$
H = H_1 * H_2 * \dots * H_n
$$

[Local Processing on](#page-0-0) Images

LE Thanh Sach

[Local processing](#page-3-0)

[Linear processing](#page-11-0)

[Correlation](#page-12-0)

[Convolution](#page-18-0)

[Linear Filtering](#page-28-0)

[Popular Linear Filter](#page-30-0)

[Convolution's Properties](#page-38-0)

Convolution's [implementation](#page-47-0)

Example

$$
H_x = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix} \quad H_y = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}
$$

Then,

$$
H_x = H_x * H_y = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}
$$

Processing at the boundary of image

[Local Processing on](#page-0-0) Images

LE Thanh Sach

Figure: Without any special consideration, the processing is invalid at boundary pixels

Processing at the boundary of image

Methods for processing boundary pixels

- **1** Cropping: do not process boundary pixels. Just obtain a smaller output image by cropping the output image.
- **2** Padding: pad a band of pixels (with zeros) to the boundary of input image. Perform the processing and the crop to get the output image.
- **3** Extending: copy pixels on the boundary to outside to get a new image. Perform the processing and the crop to get the output image.
- **4** Wrapping: reflect pixels on the boundary to outside to get a new image. Perform the processing and the crop to get the output image.

[Local Processing on](#page-0-0) Images

LE Thanh Sach

[Local processing](#page-3-0)

[Linear processing](#page-11-0)

[Correlation](#page-12-0)

[Convolution](#page-18-0)

[Linear Filtering](#page-28-0)

[Popular Linear Filter](#page-30-0)

[Convolution's Properties](#page-38-0)

Convolution's implementation

[Local Processing on](#page-0-0) Images

LE Thanh Sach

[Local processing](#page-3-0)

[Linear processing](#page-11-0)

[Correlation](#page-12-0)

[Convolution](#page-18-0)

[Linear Filtering](#page-28-0)

[Popular Linear Filter](#page-30-0)

[Convolution's Properties](#page-38-0)

Convolution's [implementation](#page-47-0)

Methods for implementing convolution and correlation

1 In space domain:

- Use sliding widow technique
- Use speed-up methods for special cases

2 In frequency domain: will be presented in next chapter

Convolution's implementation

Sliding window technique for correlation

For each pixel (u, v) on the output image, do:

- **1 Place** matrix H_{corr} centered at the corresponding pixel, i.e., pixel (u, v) , on the input image
- **2** Multiply coefficients in matrix H_{corr} with the underlying pixels on the input image.
- **3 Compute** the sum of all the resulting products in the previous step.
- \boldsymbol{A} Assign the sum to the $I^{'}(u,v) .$

Convolution can be computed by rotating the kernel 180^0 followed by the above algorithm.

LE Thanh Sach

[Local processing](#page-3-0)

[Linear processing](#page-11-0)

[Correlation](#page-12-0)

[Convolution](#page-18-0)

[Linear Filtering](#page-28-0)

[Popular Linear Filter](#page-30-0) [Convolution's Properties](#page-38-0)

Computational Complexity of sliding window technique

- Input image I has size $N \times M$
- Kernel's size is $(2r+1) \times (2r+1)$
- Then, the number of operations is directly proportional to: $MN[(2r+1)^2+(2r+1)^2-1]$.
- The computational complexity is $O(MNr^2)$

Attention!

- The cost for computing convolution and correlation is directly proportional to the kernel's size!
- The filtering process will be slower if the kernel's size is bigger.
- The computational cost of the implementation in frequency domain is independent with the kernel's size.

[Local Processing on](#page-0-0) Images

LE Thanh Sach

[Local processing](#page-3-0)

[Linear processing](#page-11-0)

[Correlation](#page-12-0)

[Convolution](#page-18-0)

[Linear Filtering](#page-28-0)

[Popular Linear Filter](#page-30-0) [Convolution's Properties](#page-38-0)

Example

To shift an image I to left 10 pixels. We can apply the following methods:

1 Method 1: Filter I with a shifting kernel of size 21×21

2 Method 2: Apply 10 times shifting kernel of size 3. Which method can result better computation cost?

Answer

Number of operations for each method is proportional to:

- $\textbf{0}$ Method 1: $MN \times (21^2) = 441MN$
- $\bm{2}$ Method 2: $10\times MN \times (3^2) = 90MN$

Method 2 is better than Method 1!

[Local Processing on](#page-0-0) Images

LE Thanh Sach

[Local processing](#page-3-0)

[Linear processing](#page-11-0)

[Correlation](#page-12-0)

[Convolution](#page-18-0)

[Linear Filtering](#page-28-0)

[Popular Linear Filter](#page-30-0) [Convolution's Properties](#page-38-0)

Because, we have

Associativity:

$$
(I * H_1) * H_2 = I * (H_1 * H_2)
$$

So, we can save the computational cost by using separability

If we can separate a kernel H into two smaller kernels $H = H_1 * H_2$, then it will often be cheaper to apply H_1 followed by H_2 , rather than H .

[Local Processing on](#page-0-0) Images

LE Thanh Sach

[Local processing](#page-3-0)

[Linear processing](#page-11-0)

[Correlation](#page-12-0)

[Convolution](#page-18-0)

[Linear Filtering](#page-28-0)

[Popular Linear Filter](#page-30-0) [Convolution's Properties](#page-38-0)

Example

Kernel H can be decomposed into $H = H_1 * H_2$, as follows:

$$
H_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \quad H_2 = \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}
$$

$$
H = H_1 * H_2 = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}
$$

Using associativity, we can filter image I with H by either

- **0** Method 1: $I' = I * H$
- **2** Method 2: $I' = (I * H_1) * H_2$

Which method is better?

[Local Processing on](#page-0-0) Images

LE Thanh Sach

[Local processing](#page-3-0)

[Linear processing](#page-11-0)

[Correlation](#page-12-0)

[Convolution](#page-18-0)

[Linear Filtering](#page-28-0)

[Popular Linear Filter](#page-30-0)

[Convolution's Properties](#page-38-0)

[Local Processing on](#page-0-0) Images

LE Thanh Sach

[Local processing](#page-3-0)

[Linear processing](#page-11-0)

[Correlation](#page-12-0)

[Convolution](#page-18-0)

[Linear Filtering](#page-28-0)

[Popular Linear Filter](#page-30-0)

[Convolution's Properties](#page-38-0)

Convolution's [implementation](#page-47-0)

Answer

Number of operations for each method is proportional to:

- ${\bf 0}$ Method 1: $MN \times (3^2) = 9MN$
- 2 Method 2: $(MN \times 3) + (MN \times 3) = 6MN$

Method 2 is better than Method 1!

Convolution's implementation

Special cases

- **Separability:** In the case that kernel filter H can be separated into smaller kernels. Consecutively apply smaller kernels to the input image can reduce the computation time, as shown in previous slide.
- **2 Box Filtering:** Kernel's coefficients of box filter are equal (value 1). So, we can use **integral image** to speed up.

[Local Processing on](#page-0-0) Images

LE Thanh Sach

[Local processing](#page-3-0)

[Linear processing](#page-11-0)

[Correlation](#page-12-0)

[Convolution](#page-18-0)

[Linear Filtering](#page-28-0)

[Popular Linear Filter](#page-30-0) [Convolution's Properties](#page-38-0)

CASE 1: 1D-array

- Input data: array $A[i]$, for $i \in [1, n]$
	- The first element, $A[0]$, is not used

A[i] 3 8 2 6 9 7 1 0 1 2 3 4 5 6 7

- Output data: integral array, denoted as $Cl*i*$
- The integral array is computed as follows

O
$$
C[0] = 0
$$

\n**Q** $C[i] = C[i-1] + A[i]$, for $i \in [1, n]$.

$C[i]$	0	3	11	13	19	28	35	36
0	1	2	3	4	5	6	7	

[Local Processing on](#page-0-0) Images

LE Thanh Sach

[Local processing](#page-3-0)

[Linear processing](#page-11-0)

[Correlation](#page-12-0)

[Convolution](#page-18-0)

[Linear Filtering](#page-28-0)

[Popular Linear Filter](#page-30-0)

[Convolution's Properties](#page-38-0)

CASE 1: 1D-array

1D Box filter's response

The sum of elements in any window, occupying from $A[i]$ to $A[j]$, can be computed fast by: $C[j] - C[i-1]$

Example

$$
\bullet \ \sum_{i=1}^{4} A[i] = C[4] - C[0] = 19 - 0 = 19
$$

$$
\bullet \ \sum_{i=2}^{6} A[i] = C[6] - C[1] = 35 - 3 = 32
$$

$$
\bullet \ \sum_{i=3}^{6} A[i] = C[6] - C[2] = 35 - 11 = 24
$$

[Local Processing on](#page-0-0) Images

LE Thanh Sach

[Local processing](#page-3-0)

[Linear processing](#page-11-0)

[Correlation](#page-12-0)

[Convolution](#page-18-0)

[Linear Filtering](#page-28-0)

[Popular Linear Filter](#page-30-0)

[Convolution's Properties](#page-38-0)

CASE 2: 2D-array

2

- Input data: Image $I(u, v)$, for $u, v \in [1, n]$
	- The first row and the first column are not used
- Output data: **integral image** $S(u, v)$. It is defined as follows.

1 The first row and the first column contains zeros, i.e.,

$$
S(0,i) = S(j,0) = 0; i,j \in [0,n]
$$

[Local Processing on](#page-0-0) Images

LE Thanh Sach

[Local processing](#page-3-0)

[Linear processing](#page-11-0)

[Correlation](#page-12-0)

[Convolution](#page-18-0)

[Linear Filtering](#page-28-0)

[Popular Linear Filter](#page-30-0)

[Convolution's Properties](#page-38-0) Convolution's

[implementation](#page-47-0)

$$
S(u, v) = \sum_{i=1}^{u} \sum_{j=1}^{v} I(i, j)
$$

CASE 2: 2D-array

A method for computing $S(u, v)$

- **1** for each element in the first row and the first column in $S(u, v)$, assign zero to it.
- **2** for each remaining element at (u, v) : $S(u, v)$ = $S(u-1, v) + S(u, v-1) - S(u-1, v-1) + I(u, v)$

[Local Processing on](#page-0-0) Images

LE Thanh Sach

[Local processing](#page-3-0)

[Linear processing](#page-11-0)

[Correlation](#page-12-0)

[Convolution](#page-18-0)

[Linear Filtering](#page-28-0)

[Popular Linear Filter](#page-30-0)

[Convolution's Properties](#page-38-0) Convolution's

[implementation](#page-47-0)

CASE 2: 2D-array

The Way to compute the filter's response

- \bullet Let $A, B, C, and D$ are the sum of all pixels in rectangle from O to $A, B, C, and D$ respectively.
- **2** The sum of pixels inside of rectangle $ABCD$ is $(C - B - D + A)$

[Local Processing on](#page-0-0) Images

LE Thanh Sach

[Local processing](#page-3-0)

[Linear processing](#page-11-0)

[Correlation](#page-12-0)

[Convolution](#page-18-0)

[Linear Filtering](#page-28-0)

[Popular Linear Filter](#page-30-0)

[Convolution's Properties](#page-38-0)

CASE 2: 2D-array

The Way to compute the filter's response

$$
I'(u_2, v_2) = C - B - D + A
$$

= $S(u_2, v_2) - S(u_1, v_2) - S(u_2, v_1) + S(u_1, v_1)$

[Local Processing on](#page-0-0) Images

LE Thanh Sach

[Local processing](#page-3-0)

[Linear processing](#page-11-0)

[Correlation](#page-12-0)

[Convolution](#page-18-0)

[Linear Filtering](#page-28-0)

[Popular Linear Filter](#page-30-0)

[Convolution's Properties](#page-38-0)