Local Processing of Images

LE Thanh Sach

Chapter 3 Local Processing on Images

Image Processing and Computer Vision

Faculty of Computer Science and Engineering Ho Chi Minh University of Technology, VNU-HCM

Local processing

Linear processing

Correlation Convolution Linear Filtering Popular Linear Filter Convolution's Properties Convolution's implementation

LE Thanh Sach

Overview

1 Local processing

2 Linear processing

Correlation Convolution Linear Filtering Popular Linear Filter Convolution's Properties Convolution's implementation

Local Processing of Images

LE Thanh Sach

Local processing

Linear processing

Sources of slides

Sources

This presentation uses figures, slides and information from the following sources:

- Rafael C. Gonzalez, Richard E. Woods, "Digital Image Processing", 2nd Editions.
- Maria Petrou and Costas Petrou, "Image Processing: The Fundamentals", 2nd Editions.
- Slides of Course "CS 4640: Image Processing Basics", from Utah University.

Local Processing of Images

LE Thanh Sach

Local processing

Local Processing of Images

LE Thanh Sach

Local processing

Linear processing

Correlation Convolution Linear Filtering Popular Linear Filter Convolution's Properties Convolution's implementation

What is local processing?

Definition

Local processing is an image operation where each pixel value I(u, v) is changed by a **function** of the intensities of pixels in a **neighborhood** of the pixel (u, v).

Local Processing of Images

LE Thanh Sach

Local processing

Example

- An image I(u,v); a pixel (u,v) and its neighborhood of 3×3 pixels

Figure: Example of neighborhood

Local Processing of Images

LE Thanh Sach

Local processing

Example

Examples of some processing functions

- Linear functions
 - Averaging function
 - O Shifting function
 - 8 Gaussian function
 - 4 Edge detecting function
- Non-linear functions
 - Median function
 - 2 Min function
 - 8 Max function

Local Processing of Images

LE Thanh Sach

Local processing

• Example of an averaging function

u-1 *u u*+1

$$I^{'}(u,v) = \frac{1}{9} \sum_{i=-1}^{1} \sum_{j=-1}^{1} I(u+i,v+j)$$

Local Processing of Images

LE Thanh Sach

Local processing

• Example of an averaging function

Input image

Output image

• The output image is obtained by averaging the input with neighborhood of 9×9 pixels.

Local Processing of Images

LE Thanh Sach

Local processing

• Example of an averaging function

Input image

Output image blurred, smoothed

Local Processing of Images

LE Thanh Sach

Local processing

$$I'(u,v) = \frac{1}{9 \times 9} \sum_{i=-4}^{4} \sum_{j=-4}^{4} I(u+i,v+j)$$

• Example of a median function (a non-linear function)

Input image

Output image Noises have been removed

• The output image is obtained by computing the median value of a set of pixels in a neighborhood of 3×3 pixels.

Local Processing of Images

LE Thanh Sach

Local processing

Local Processing of Images

LE Thanh Sach

Local processing

Linear processing

Correlation Convolution Linear Filtering Popular Linear Filter Convolution's Properties Convolution's implementation

Linear processing function

Mean function

Consider an averaging function on square window. In general, the window can have different size of each dimension. The output of the averaging is determined by.

$$I'(u,v) = \frac{1}{(2r+1) \times (2r+1)} \sum_{i=-r}^{r} \sum_{j=-r}^{r} I(u+i,v+j)$$

 $I^{\prime}(u,v)$ can be written as

$$I'(u,v) = \sum_{i=-r}^{r} \sum_{j=-r}^{r} I(u+i,v+j).H_{corr}(i,j)$$

Local Processing of Images

LE Thanh Sach

Local processing Linear processing

Mean function

1 H_{corr} is a matrix of size $(2r+1) \times (2r+1)$

2
$$H_{corr} = \frac{1}{(2r+1) \times (2r+1)} M_{ones}$$

and,

 $\textbf{3} \ M_{ones}: \text{is an matrix of size } (2r+1)\times(2r+1) \\ \text{containing value 1 for all elements.}$

Example

Matrix for averaging pixels in a neighborhood of size 5×5 , i.e., r = 2.

Local Processing of Images

LE Thanh Sach

Local processing Linear processing Convolution Linear Filtering Popular Linear Filter Convolution's Properties Convolution's Properties

implementation

From averaging function to others

A way to construct other linear processing functions

If one changes ${\cal H}_{corr}$ to other kinds of matrix, he obtains other linear function.

Example

Edge detecting function (Sobel)

$$H_{corr} = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix} \quad H_{corr} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

Shifting function

$$H_{corr} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Local Processing of Images

LE Thanh Sach

Local processing Linear processing

Correlation Convolution

Linear Filtering

Popular Linear Filter

Convolution's Properties

Convolution's implementation

Correlation

Definition

Input data:

1 Input image, I(u, v)

2 Matrix $H_{corr}(i, j)$ of size $(2r + 1) \times (2r + 1)$. In general, the size on two dimensions maybe different.

Correlation is defined as follows:

$$I'_{corr}(u,v) = \sum_{i=-r}^{r} \sum_{j=-r}^{r} I(u+i,v+j) \cdot H_{corr}(i,j)$$

Local Processing of Images

LE Thanh Sach

Correlation: How does it works?

Local Processing of Images

LE Thanh Sach

BK TP.HC

Figure: Method for computing the correlation for one pixel

3.17

Correlation: How does it works?

A computation process

For each pixel (u, v) on the output image, do:

- Place matrix H_{corr} centered at the corresponding pixel, i.e., pixel (u, v), on the input image
- **Oultiply** coefficients in matrix H_{corr} with the underlying pixels on the input image.
- 3 Compute the sum of all the resulting products in the previous step.
- **4** Assign the sum to the I'(u, v).

Local Processing of Images

LE Thanh Sach

Local processing

Linear processing

Convolution Linear Filtering

Popular Linear Filter Convolution's Properties

Convolution's implementation

Convolution

Definition

Input data:

- 1 Input image, I(u, v)
- 2 Matrix H_{conv} of size $(2r+1) \times (2r+1)$. In general, the size on two dimensions maybe different.

Convolution is defined as follows:

$$I'_{conv}(u,v) = \sum_{i=-r}^{r} \sum_{j=-r}^{r} I(u-i,v-j) \cdot H_{conv}(i,j)$$

Local Processing of Images

LE Thanh Sach

Convolution

Natation

- Operator * is used to denote the convolution between image I and matrix H_{conv}
- That is

$$I'_{conv}(u,v) = I * H_{conv}$$
$$= \sum_{i=-r}^{r} \sum_{j=-r}^{r} I(u-i,v-j) \cdot H_{conv}(i,j)$$

Local Processing of Images

LE Thanh Sach

Convolution

Local Processing of Images

LE Thanh Sach

Local processing Linear processing Correlation Linear Filtering Popular Linear Filter Convolution's Properties Convolution's

implementation

Attention!

- When *I* is an gray image, both of *I* and *H*_{conv} are matrices.
- However, I * H_{conv} is convolution between I and H_{conv}, instead of matrix multiplication!

Mathematics

$$I'_{conv}(u,v) = \sum_{i=-r}^{r} \sum_{j=-r}^{r} I(u-i,v-j).H_{conv}(i,j)$$
$$I'_{corr}(u,v) = \sum_{i=-r}^{r} \sum_{j=-r}^{r} I(u+i,v+j).H_{corr}(i,j)$$

In mathematics, convolution and correlation are different in the sign of i and j inside of I(u+i,v+j) and I(u-i,v-j)

Local Processing of Images

LE Thanh Sach

Local processing Linear processing Correlation Linear Filtering Popular Linear Filter Convolution's Properties Convolution's Properties

Convolution to Correlation

• Let
$$s = -i$$
 and $t = -j$

We have

$$\int_{conv}^{r} (u, v) = \sum_{i=-r}^{r} \sum_{j=-r}^{r} I(u-i, v-j) \cdot H_{conv}(i, j) \\
= \sum_{i=-r}^{r} \sum_{j=-r}^{r} I(u+s, v+t) \cdot H_{conv}(-s, -t)$$

 $H_{conv}(-s,-t)$ from $H_{conv}(i,j)$

 $H_{conv}(-s,-t)$ can be obtained from $H_{conv}(i,j)$ by either

- Flipping $H_{conv}(i, j)$ on x and then on y axis
- Rotating $H_{conv}(i, j)$ around its center 180^0

Local Processing of Images

LE Thanh Sach

Example

Demonstration of rotation and flipping.

$$H = \begin{bmatrix} \textcircled{1} & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \quad H_{flipped_x} = \begin{bmatrix} 3 & 2 & \textcircled{1} \\ 6 & 5 & 4 \\ 9 & 8 & 7 \end{bmatrix}$$

 $H_{flipped_x}$ is obtained from H by flipping H on x-axis. After flipping $H_{flipped_x}$ around y axis

$$H_{flipped_xy} = \begin{bmatrix} 9 & 8 & 7 \\ 6 & 5 & 4 \\ 3 & 2 & (\textbf{I}) \end{bmatrix}$$

 $H_{flipped_xy}$ can obtained from H by rotating $H \ 180^0$ around H 's center.

Local Processing of Images

LE Thanh Sach

Correlation to Convolution

• Let
$$s = -i$$
 and $t = -j$

We have

$$\int_{corr}^{r}(u,v) = \sum_{i=-r}^{r} \sum_{j=-r}^{r} I(u+i,v+j).H_{corr}(i,j)$$
$$= \sum_{i=-r}^{r} \sum_{j=-r}^{r} I(u-s,v-t).H_{corr}(-s,-t)$$

 $H_{corr}(-s,-t)$ from $H_{corr}(i,j)$

 $H_{corr}(-s,-t)$ can be obtained from $H_{corr}(i,j)$ by either

- Flipping $H_{corr}(i, j)$ on x and then on y axis
- Rotating $H_{corr}(i, j)$ around its center 180^0

Local Processing of Images

LE Thanh Sach

Local processing Linear processing Correlation Linear Filtering Popular Linear Filter Convolution's Properties Convolution's Properties

Convolution-Correlation Conversion

Local Processing of Images

LE Thanh Sach

Local processing Linear processing Correlation Convolution Linear Filtering Popular Linear Filter Convolution's properties Convolution's implementation

Relationship

- Convolution can be computed by correlation and vice versa.
- Por example, convolution can be computed by correlation by: first, (a) rotating the matrix 180⁰ and then (b) computing the correlation between the rotated matrix with the input image.

Convolution: How does it works?

A Computation process

1 Rotate matrix H_{conv} around its center 180^0 to obtain H_{corr}

For each pixel (u, v) on the output image, do:

- Place matrix H_{corr} centered at the corresponding pixel, i.e., pixel (u, v), on the input image
- Oultiply coefficients in matrix H_{corr} with the underlying pixels on the input image.
- **3 Compute** the sum of all the resulting products in the previous step.
- **4** Assign the sum to the I'(u, v).

Local Processing of Images

LE Thanh Sach

Local processing Linear processing Correlation Linear Filtering Popular Linear Filter Convolution's Properties Convolution's Properties

MATLAB's function

Example

MATLAB's functions supports correlation and convolution

- 1 corr2
- 2 xcorr2
- S conv2
- 4 filter2
- **6** imfilter

MATLAB's function supports creating special matrix

fspecial

Local Processing of Images

LE Thanh Sach

Local processing Linear processing Correlation Convolution Linear Filtering Popular Linear Filter

Convolution's Properties Convolution's implementation

Linear Filtering

Definition

Linear filtering is a process of applying the **convolution or** the correlation between an matrix H to input image I(u, v).

Local Processing of Images

LE Thanh Sach

Local processing Linear processing Correlation Convolution Linear Filter Convolution's Properties Convolution's

implementation

Filter's kernel

Definition

In filtering, matrix H is called the filter's kernel.

Other names of \boldsymbol{H}

- Filter's kernel
- Window
- Mask
- Template
- Matrix
- Local region

Local Processing of Images

LE Thanh Sach

Local processing

Linear processing

Correlation

Convolution

Linear Filtering

Popular Linear Filter Convolution's Properties Convolution's implementation

Popular Linear Filter: Mean filter

Example

Mean filter's kernel

• General case:

$$H_{corr} = \frac{1}{(2r+1)^2} \times \begin{bmatrix} 1 & 1 & \dots & 1 & 1 \\ 1 & 1 & \dots & 1 & 1 \\ \dots & \dots & \dots & \dots & \dots \\ 1 & 1 & \dots & 1 & 1 \\ 1 & 1 & \dots & 1 & 1 \end{bmatrix}_{(2r+1)\times(2r+1)}$$

Local Processing of Images

LE Thanh Sach

Local processing

Linear processing

Correlation

Convolution

Linear Filtering

Popular Linear Filter

Convolution's Properties Convolution's implementation

Popular Linear Filter: Mean filter

Local Processing of Images

LE Thanh Sach

Popular Linear Filter: Mean filter

Local Processing of Images

LE Thanh Sach

Filtered with H's size: 5×5 Filtered with *H*'s size: 11×11

Popular Linear Filter Convolution's Properties

implementation

Popular Linear Filter: Gaussian filter

2D-Gaussian Function

$$G(x,y,\sigma)=\frac{1}{2\pi\sigma^2}exp(-\frac{x^2+y^2}{2\sigma^2})$$

Figure: 2D-Gaussian Function

Local Processing of Images

LE Thanh Sach

Local processing

Linear processing

Correlation

Convolution

Linear Filtering

Popular Linear Filter

Convolution's Properties

Convolution's implementation

Popular Linear Filter: Gaussian filter

Example

- H's size is 3×3
- $\sigma = 0.5$

$$H = \begin{bmatrix} 0.0113 & 0.0838 & 0.0113 \\ 0.0838 & 0.6193 & 0.0838 \\ 0.0113 & 0.0838 & 0.0113 \end{bmatrix}$$

•
$$H$$
's size is 5×5

•
$$\sigma = 0.5$$

	0.0000	0.0000	0.0002	0.0000	0.0000]
H =	0.0000	0.0113	0.0837	0.0113	0.0000
	0.0002	0.0837	0.6187	0.0837	0.0002
	0.0000	0.0113	0.0837	0.0113	0.0000
	0.0000	0.0000	0.0002	0.0000	0.0000

Local Processing of Images

LE Thanh Sach

Local processing

Linear processing

Correlation

Convolution

Linear Filtering

Popular Linear Filter

Convolution's Properties

Convolution's implementation

Popular Linear Filter: Gaussian filter

Local Processing of Images

LE Thanh Sach

Local processing Linear processing Correlation Convolution Linear Filtering Popular Linear Filter Convolution's Properties Convolution's implementation

Filtered with Mean filter *H*'s size: 11×11

a a a a a a a a a Filtered with Gaussian filter *H*'s size: 11×11 $\sigma = 0.5$

Popular Linear Filter: Shifting filter

Example

• In order to shift pixel (u, v) to (u - 2, v + 2), use the following kernel

Local Processing of Images

LE Thanh Sach

Local processing

Linear processing

Correlation

Convolution

Linear Filtering

Popular Linear Filter

Convolution's Properties

Popular Linear Filter: Shifting filter

Local Processing of Images

LE Thanh Sach

Commutativity:

$$I * H = H * I$$

Meaning

- 1 This means that we can think of the image as the kernel and the kernel as the image and get the same result.
- In other words, we can leave the image fixed and slide the kernel or leave the kernel fixed and slide the image.

Local Processing of Images

LE Thanh Sach

Local processing

Linear processing Correlation Convolution Linear Filtering Popular Linear Filter Convolution's Properties Convolution's

Local Processing of Images

LE Thanh Sach

Local processing

Linear processing

Correlation

Convolution

Linear Filtering

Popular Linear Filter

Convolution's Properties

Convolution's implementation

Associativity:

$$(I * H_1) * H_2 = I * (H_1 * H_2)$$

Meaning

1 This means that we can apply H_1 to I followed by H_2 , or we can convolve the kernel $H_2 * H_1$ and then apply the resulting kernel to I.

Linearity:

$$(\alpha.I) * H = \alpha.(I * H)$$

 $(I_1 + I_2) * H = I_1 * H + I_2 * H$

Meaning

1 This means that we can multiply an image by a constant before or after convolution, and we can add two images before or after convolution and get the same results.

Local Processing of Images

LE Thanh Sach

Local processing

Linear processing

Convolution

Linear Filtering

Popular Linear Filter

Convolution's Properties

Shift-Invariance

Let S be an operator that shifts an image I: $S(I)(u,v) = I(u+a,v+b) \label{eq:sigma}$

Then,

$$S(I * H) = S(I) * H$$

Meaning

1 This means that we can convolve I and H and then shift the result, or we can shift I and then convolve it with H.

Local Processing of Images

LE Thanh Sach

Local processing

Linear processing

Convolution

Linear Filtering

Popular Linear Filter

Convolution's Properties

Local Processing of Images

LE Thanh Sach

Local processing

Linear processing

Correlation

Convolution

Linear Filtering

Popular Linear Filter

Convolution's Properties

Convolution's implementation

Separability

A kernel H is called separable if it can be broken down into the convolution of two kernels:

$$H = H_1 * H_2$$

More generally, we might have:

$$H = H_1 * H_2 * \dots * H_n$$

Local Processing of Images

LE Thanh Sach

BK

Local processing

Linear processing

Correlation

Convolution

Linear Filtering

Popular Linear Filter

Convolution's Properties

Convolution's implementation

Example

$$H_x = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \quad H_y = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Then,

Processing at the boundary of image

Local Processing of Images

LE Thanh Sach

Figure: Without any special consideration, the processing is invalid at boundary pixels

Processing at the boundary of image

Methods for processing boundary pixels

- Cropping: do not process boundary pixels. Just obtain a smaller output image by cropping the output image.
- **Padding**: pad a band of pixels (with zeros) to the boundary of input image. Perform the processing and the crop to get the output image.
- **3 Extending**: copy pixels on the boundary to outside to get a new image. Perform the processing and the crop to get the output image.
- Wrapping: reflect pixels on the boundary to outside to get a new image. Perform the processing and the crop to get the output image.

Local Processing of Images

LE Thanh Sach

Local processing

Linear processing Correlation Convolution Linear Filtering Popular Linear Filter

Convolution's Properties

Convolution's implementation

Local Processing of Images

LE Thanh Sach

Local processing

In space domain: 1

- Use sliding widow technique
- Use speed-up methods for special cases

Methods for implementing convolution and correlation

In frequency domain: will be presented in next chapter 2

Linear processing

Correlation

Convolution

Linear Filtering

Popular Linear Filter

Convolution's Properties

Convolution's implementation

Sliding window technique for correlation

For each pixel (u, v) on the output image, do:

- Place matrix H_{corr} centered at the corresponding pixel, i.e., pixel (u, v), on the input image
- Oultiply coefficients in matrix H_{corr} with the underlying pixels on the input image.
- **6 Compute** the sum of all the resulting products in the previous step.
- **4** Assign the sum to the I'(u, v).

Convolution can be computed by rotating the kernel $180^0\,$ followed by the above algorithm.

Local Processing of Images

LE Thanh Sach

Local processing

Computational Complexity of sliding window technique

- Input image I has size $N \times M$
- Kernel's size is $(2r+1) \times (2r+1)$
- Then, the number of operations is directly proportional to: MN[(2r+1)² + (2r+1)² - 1].
- The computational complexity is $O(MNr^2)$

Attention!

- The cost for computing convolution and correlation is directly proportional to the kernel's size!
- The filtering process will be slower if the kernel's size is bigger.
- The computational cost of the implementation in frequency domain is independent with the kernel's size.

Local Processing of Images

LE Thanh Sach

Local processing

Example

To shift an image I to left 10 pixels. We can apply the following methods:

() Method 1: Filter I with a shifting kernel of size 21×21 .

Method 2: Apply 10 times shifting kernel of size 3.Which method can result better computation cost?

Answer

Number of operations for each method is proportional to:

- **1** Method 1: $MN \times (21^2) = 441MN$
- **2** Method 2: $10 \times MN \times (3^2) = 90MN$

Method 2 is better than Method 1!

Local Processing of Images

LE Thanh Sach

Local processing

Because, we have

Associativity:

$$(I * H_1) * H_2 = I * (H_1 * H_2)$$

So, we can save the computational cost by using separability

If we can separate a kernel H into two smaller kernels $H = H_1 * H_2$, then it will often be cheaper to apply H_1 followed by H_2 , rather than H.

Local Processing of Images

LE Thanh Sach

Local processing

Example

Kernel H can be decomposed into $H = H_1 * H_2$, as follows:

$$H_1 = \begin{bmatrix} 1\\2\\1 \end{bmatrix} \quad H_2 = \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$$

$$H = H_1 * H_2 = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

Using associativity, we can filter image I with H by either

- **()** Method 1: I' = I * H
- **2** Method 2: $I' = (I * H_1) * H_2$

Which method is better?

Local Processing of Images

LE Thanh Sach

Local processing

Local Processing of Images

LE Thanh Sach

Local processing

Linear processing

- Correlation Convolution
- . . .
- Linear Filtering

Popular Linear Filter

Convolution's Properties

Convolution's implementation

Answer

Number of operations for each method is proportional to:

- **1** Method 1: $MN \times (3^2) = 9MN$
- **2** Method 2: $(MN \times 3) + (MN \times 3) = 6MN$

Method 2 is better than Method 1!

Convolution's implementation

Special cases

- Separability: In the case that kernel filter H can be separated into smaller kernels. Consecutively apply smaller kernels to the input image can reduce the computation time, as shown in previous slide.
- **Box Filtering:** Kernel's coefficients of box filter are equal (value 1). So, we can use **integral image** to speed up.

Local Processing of Images

LE Thanh Sach

Local processing

Linear processing Correlation

Convolution

Linear Filtering

Popular Linear Filter

Convolution's Properties

implementation

CASE 1: 1D-array

- Input data: array A[i], for $i \in [1, n]$
 - The first element, A[0], is not used

$$A[i] \begin{array}{|c|c|c|c|c|c|c|c|c|c|} \hline & 3 & 8 & 2 & 6 & 9 & 7 & 1 \\ \hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline \end{array}$$

- Output data: integral array, denoted as C[i]
- The integral array is computed as follows

1
$$C[0] = 0$$

2 $C[i] = C[i-1] + A[i]$, for $i \in [1, n]$.

Local Processing of Images

LE Thanh Sach

Local processing

CASE 1: 1D-array

1D Box filter's response

The sum of elements in any window, occupying from A[i] to $A[j], \, {\rm can}$ be computed fast by: C[j]-C[i-1]

Example

$$\sum_{i=1}^{4} A[i] = C[4] - C[0] = 19 - 0 = 19$$

2
$$\sum_{i=2}^{6} A[i] = C[6] - C[1] = 35 - 3 = 32$$

3
$$\sum_{i=3}^{6} A[i] = C[6] - C[2] = 35 - 11 = 24$$

Local Processing of Images

LE Thanh Sach

Local processing

Linear processing Correlation Convolution Linear Filtering Popular Linear Filter Convolution's Properties Convolution's

implementation

CASE 2: 2D-array

2

- Input data: Image I(u, v), for $u, v \in [1, n]$
 - The first row and the first column are not used
- Output data: integral image S(u, v). It is defined as follows.

1 The first row and the first column contains zeros, i.e.,

$$S(0,i) = S(j,0) = 0; i,j \in [0,n]$$

 $S(u,v) = \sum^{u} \sum^{v} I(i,j)$

Local Processing of Images

LE Thanh Sach

Local processing

CASE 2: 2D-array

A method for computing S(u, v)

- 1 for each element in the first row and the first column in S(u, v), assign zero to it.
- **2** for each remaining element at (u, v): S(u, v) = S(u-1, v) + S(u, v-1) S(u-1, v-1) + I(u, v)

Local Processing of Images

LE Thanh Sach

Local processing

CASE 2: 2D-array

The Way to compute the filter's response

- Let A, B, C, andD are the sum of all pixels in rectangle from O to A, B, C, andD respectively.
- **2** The sum of pixels inside of rectangle ABCD is (C B D + A)

Local Processing of Images

LE Thanh Sach

Local processing

Linear processing

Convolution

Linear Filtering

Popular Linear Filter

Convolution's Properties

implementation

CASE 2: 2D-array

The Way to compute the filter's response

$$I'(u_2, v_2) = C - B - D + A$$

= $S(u_2, v_2) - S(u_1, v_2) - S(u_2, v_1) + S(u_1, v_1)$

Local Processing of Images

LE Thanh Sach

Local processing

Linear processing

Correlation

Convolution

Linear Filtering

Popular Linear Filter

Convolution's Properties