# Point Processing and Histogram

LE Thanh Sach



# Point processing

Logarithmic transformation Exponential transformation Power-law transformation

### Histogram

Definition
Computation
Equalization
Specification

# Chapter 2 Point Processing and Histogram

Image Processing and Computer Vision

# LE Thanh Sach

Faculty of Computer Science and Engineering Ho Chi Minh University of Technology, VNU-HCM

# Overview

# Point Processing and Histogram

LE Thanh Sach



# Point processing

Linear transformation
Logarithmic transformation
Exponential transformation
Power-law transformation

### Histogram

Definition Computation Equalization Specification

# 1 Point processing

Linear transformation Logarithmic transformation Exponential transformation Power-law transformation

# 2 Histogram

Definition

Computation

Equalization

### Point Processing and Histogram

LE Thanh Sach



# **Concepts**

- Image: f(x,y)
  - 1 x: discrete variable, in [0, 1, ..., N]
  - 2 y: discrete variable, in [0, 1, ..., M]
  - **3** f(x,y): discrete value, in [0,1,..,255]
- point ≡ pixel
- f(x,y): has  $M \times N$  points (or pixels)

# Point processing

Logarithmic transformation Exponential transformation Power-law transformation

### Histogram

# **Definition and Notation**

- Point processing: Process each point by a function that depends ONLY the pixel's value and that does not depend on the point's neighbors.
- Pixel processing function:
  - referred to as transfer function
  - denoted as T[.]



- f(x,y): input image
- g(x,y) = T[f(x,y)]: output image

LE Thanh Sach



# Point processing

Linear transformation

Logarithmic transformation

Exponential transformation

Power-law transformation

### Histogram

# Linear transformation: Math

- $g(x,y) = a \times f(x,y) + b$
- Where, a and b: pre-defined parameters

# **Linear transformation: Applications**

- General: Change the image's intensity, cause the input bighter or darker
  - Users have to choose appropriate a and b (manually)
- Specific:
  - Create negative images
  - Convert to back-white image



### Linear transformation

Logarithmic transformation Exponential transformation Power-law transformation

### Histogram

```
Linear transformation: with Matlab
```

```
%read input image
im = imread('cameraman.tif');
%set parameters
a1 = 1.5; b1 = 20;
a2 = 1.5; b2 = 50;
a3 = 0.5; b3 = 0;
%transform the input
im1 = a1 * im + b1; %clipped to [0,255] auto
im2 = a2 * im + b2; %clipped to [0,255] auto
im3 = a3 * im + b3; %clipped to [0,255] auto
```

# ВК

## Point processing

### Linear transformation

Logarithmic transformation Exponential transformation Power-law transformation

### Histogram

```
Linear transformation: with Matlab(continued)
```

```
%show output image
figure:
subplot(2,2,1); imshow(im); title('input_image')
subplot (2,2,2); imshow(im1);
t1 = sprintf('output_image_[a_=\%5.2f, b_==\%5.2f]'
               a1. b1):
title(t1)
subplot (2,2,3); imshow(im2);
t2 = sprintf('output_image_[a_=\%5.2f, b_==\%5.2f]'.
               a2. b2):
title (t2)
subplot (2,2,4); imshow(im3);
t3 = sprintf('output_image_i[a_=\%5.2f, b_==\%5.2f]'
               a3, b3);
title (t3)
suptitle ('Linear_Transformation: _output_=_a*input_+_b'):
```

Input image



Output Image [a = 1.5, b = 50] [a = 0.5, b = 0]



Output Image [a = 1.5, b = 20]



Output Image

**Table:** Linear Transformation: **output** = a \* input + b

Point Processing and Histogram

LE Thanh Sach



# Point processing

### Linear transformation Logarithmic transformation

Exponential transformation Power-law transformation

# Histogram

# Linear transformation: Illustration



**Table:** Creating negative image:  $\mathbf{output} = \mathbf{a} * \mathbf{input} + \mathbf{b}$ ; where,  $\mathbf{a} = -1, \mathbf{b} = \mathbf{255}$ 

# Point Processing and Histogram

LE Thanh Sach



# Point processing

### Linear transformation

Logarithmic transformation Exponential transformation Power-law transformation

## Histogram

# **Linear transformation: Illustration**



**Table:** Creating negative image: output = a \* input + b; where, a = -1, b = 255

Point Processing and Histogram

LE Thanh Sach



# Point processing

# Linear transformation Logarithmic transformation

Exponential transformation Power-law transformation

# Histogram

### Point processing Linear transformation

# Logarithmic transformation

### Exponential transformation Power-law transformation

Computation Equalization Specification

Histogram Definition

# Logarithmic transformation: Math

- $g(x,y) = a \times \log[1 + f(x,y)] + b$
- Where, a: a pre-defined parameter

# Logarithm function



- a large value  $(x) \to \text{mapped to a smaller value } (\log_2 x)$
- a large distance between two intensities in the input image  $\rightarrow$  mapped to a smaller distance in the output



Linear transformation Logarithmic transformation

## Exponential transformation

Power-law transformation

### Histogram

Definition

Computation Equalization Specification

# Logarithmic transformation: Applications

- Input image:
  - have some regions with too dark intensities (near 0)
  - have some regions with too bright intensities (near 255)
- Requirement:
  - Make dark regions brighter while keeping the intensity in bright regions lower than 255.
  - Or, make bright regions darker while keeping the intensity in dark regions lower than 0.
- Solution: use logarithmic transformation
- Often case:
  - Should use logarithmic transformation to enhance the result of FFT before displaying

# Logarithmic transformation: Illustration













Table: Samples

Point Processing and Histogram

LE Thanh Sach



Point processing
Linear transformation

Logarithmic transformation

Exponential transformation Power-law transformation

### Histogram

LE Thanh Sach

•  $g(x,y) = a \times e^{f(x,y)} + b$ 

ВК тр.нсм

ullet Where, a and b: pre-defined parameters

# Point processing

Logarithmic transformation

Exponential transformation

### Histogram

Definition
Computation
Equalization
Specification

# **Exponential function**



- ullet a small value (x) o mapped to a larger value  $e^x$
- ullet a small distance between two intensities in the input ullet mapped to a larger distance in the output image

# **Exponential transformation: Applications**

 map small differences between two intensities in the input to a larger differences in the output image (contrast input images)

# **Exponential transformation: with Matlab**

```
%read input image
path = 'coffebean.png'
im = imread(path); %range [0->255]
%convert double image: [0->1]
im = im2double(im);
%set parameters
a = 1: b = -1:
%transform input image
im1 = a * exp(im) + b;
%normalize the output, to [0->1]
im1 = im1./max(im1(:));
```

# BK TP.HCM

## Point processing

Linear transformation

Logarithmic transformation

Exponential transformation

## Histogram

Definition Computation Equalization Specification

# **Exponential transformation: with Matlab (continued)**

%show image

figure; imshow(im); title('input\_image');
figure; imshow(im1); title('output\_image');





Input image

output image

Table:  $g(x,y) = a \times e^{f(x,y)} + b$ ; where, a = 1, b = -1

Linear transformation Logarithmic transformation Exponential transformation Power-law transformation

# Histogram

Definition Computation Equalization Specification

LE Thanh Sach

• Where, a and b: pre-defined parameters

Power-law transformation: Math

•  $g(x,y) = a \times f(x,y)^{\gamma} + b$ 



### Point Processing and Histogram

LE Thanh Sach



# Power-law function: characteristics

• Depend on  $\gamma$ , power-law transformation can be either

1 linear transformation: for  $\gamma = 1$ 

**2** log transformation: for  $\gamma < 1$ 

**3** inverse-log transformation: for  $\gamma > 1$ 

### Point processing

Linear transformation

Logarithmic transformation

Exponential transformation

Power-law transformation

### Histogram

### LE Thanh Sach



### Point processing

Linear transformation
Logarithmic transformation
Exponential transformation
Power-law transformation

### Histogram

Definition Computation Equalization Specification

# Power-law transformation: Illustration



# ВК

# Point processing

Linear transformation

Logarithmic transformation

Exponential transformation

Power-law transformation

### Histogram

### Definition

Computation Equalization Specification

# **Definition**

**Histogram** computed for image I is a **statistical quantity**, contains the following information

- number of pixels in I for each intensity (for each value in [0,255]). This kind of histogram is referred to as unnormalized histogram.
  - Sum of all values in this kind of histogram = total number of pixels in I
- probability distribution of intensities in image I. This kind of histogram is referred to as normalized histogram.
  - ullet Sum of all values in this kind of histogram =1



Logarithmic transformation
Exponential transformation
Power-law transformation

### Histogram

### Definition

Computation Equalization Specification



(a) An image



(b) Its Histogram

• From histogram (b): almost of pixels in the image have the intensity near 0. Therefore, the image is too dark, confirmed by image (a).

# Histogram



(a) An image



(b) Its Histogram

• From histogram (b): almost of pixels in the image have the intensity near 255. Therefore, the image is too bright, confirmed by image (a).

# Point Processing and Histogram

LE Thanh Sach



# Point processing

Linear transformation
Logarithmic transformation
Exponential transformation
Power-law transformation

### Histogram

### Definition

Computation Equalization Specification

# Histogram

(a) An image



(b) Its Histogram

• From histogram (b): almost of pixels in the image have the intensity compacted in short range [100,130]. Therefore, the image has very low contrast, confirmed by image (a).

### Point Processing and Histogram

LE Thanh Sach



# Point processing

Linear transformation

Logarithmic transformation

Exponential transformation

Power-law transformation

### Histogram

### Definition

Computation Equalization Specification

LE Thanh Sach



# Point processing

Linear transformation

Logarithmic transformation

Exponential transformation

# Histogram

## Definition

Computation Equalization Specification



(a) An image



(b) Its Histogram

• From histogram (b): the pixels in the image are distributed in a full range [0,255]. Therefore, the image is balanced (not to dark, not to bright) and has a high contrast (**preferred**).



# Histogram: with C/C++/Java

# Excercise:

 Write a function for computing the histogram (unnormalized and normalized) of the input image passed to the function.

# Point processing

Linear transformation
Logarithmic transformation
Exponential transformation
Power-law transformation

### Histogram

# Definition

omputation

Equalization Specification

# Histogram: with Matlab

• use functions: imhist

```
%read input images
path1 = 'Fig3.15(a)1.ipg';
path2 = 'Fig3.15(a)2.ipg';
path3 = 'Fig3.15(a)3.ipg';
path4 = 'Fig3.15(a)4.ipg';
im1 = imread(path1);
im2 = imread(path2);
im3 = imread(path3);
im4 = imread(path4);
%Compute histogram
[count1, x1] = imhist(im1);
[count2, x2] = imhist(im2);
[count3, x3] = imhist(im3);
[count4, x4] = imhist(im4);
```

### LE Thanh Sach



# Point processing

Logarithmic transformation Exponential transformation Power-law transformation

# Histogram

Definition

### omputation

Equalization Specification

Linear transformation

Logarithmic transformation

Exponential transformation

Histogram

Definition Computation

omputation

Equalization Specification

```
Histogram: with Matlab (continued)
```

Histogram

```
%show input images
figure; imshow(im1); title('input_image_1');
figure; imshow(im2); title('input_image_2');
figure; imshow(im3); title('input_image_3');
figure; imshow(im4); title('input_image_4');
%draw histograms
figure; stem(x1, count1, '.');
xlim([0,255]); title('histogram_1');
figure; stem(x2, count2, '.');
xlim ([0,255]); title('histogram_2');
figure; stem(x3, count3, '.');
xlim ([0,255]); title ('histogram_3');
figure; stem(x4, count4, '.');
xlim ([0,255]); title('histogram_4');
```

**Histogram Equalization** is an operation to create an image (from a given image) whose pixels's value distributed uniformly in  $\left[0,255\right]$ 

 Purpose of histogram equalization: to create image not too dark, not too bright, and high contrast



(a) An image (not preferred)



(b) Its normalized histogram (not preferred)

LE Thanh Sach



### Point processing

Linear transformation

Logarithmic transformation

Exponential transformation

### Histogram

Definition Computation

## Equalization

# **Histogram Equalization: What?**

**Histogram Equalization** is an operation to create an image (from a given image) whose pixels's value distributed uniformly in  $\left[0,255\right]$ 

 Purpose of histogram equalization: to create image not too dark, not too bright, and high contrast



(a) Image, preferred (after equalization)



(b) Histogram, preferred (after equalization)

Point Processing and Histogram

LE Thanh Sach



# Point processing

Linear transformation

Logarithmic transformation

Exponential transformation

### Histogram

Definition Computation

Equalization



Logarithmic transformation Exponential transformation Power-law transformation

### Histogram

Definition Computation Equalization

Specification

# **Histogram Equalization: How?**

# Input:

- Input image I
  - So, compute the **normalized-histogram** of image I, to obtain:  $p_x(x)$ :
- **2** Expected **normalized-histogram** of the output image:  $p_z(z)$ 
  - with histogram equalization:  $p_z(z)$  is a uniform distribution over [0,255]
  - with histogram specification:  $p_z(z)$  is specified by users (interactively)

# ВК

# Point processing

Logarithmic transformation Exponential transformation Power-law transformation

# Histogram

Definition Computation Equalization

Specification

# **Histogram Equalization: How?**

We can determine z (e.g., pixel value of the output image), if we know:

- 1 x: pixel value of the input image
- $oldsymbol{2} p_x(x)$ : pdf of x
- 3  $p_z(z)$ : pdf of z

Assume that z=f(x) has been determined, the output image g(u,v) can be produced from the input f(u,v) as follows:

- foreach point (u, v) in f(u, v):
  - x = f(u, v) (get the value of the input pixel)
  - z = f(x) (map to the output value)
  - g(u,v)=z (assign to the output pixel)

# **Histogram: Equalization**

# **Determination of** z = f(x)

Let  $c_x(x)$  and  $c_z(z)$  be cumulative density functions of xand z.

$$c_x(x) = \sum_{i=0}^{x} p_x(i)$$
$$c_z(z) = \sum_{i=0}^{z} p_z(i)$$

$$c_z(z) = \sum_{i=0}^{z} p_z(i)$$

Point Processing and Histogram

LE Thanh Sach



# Point processing

Linear transformation Logarithmic transformation Exponential transformation Power-law transformation

### Histogram

Definition Computation Equalization

# **Determination of** z = f(x)

- Assume that we have  $z_1 = f(x_1)$
- Then,  $c_z(z_1) = c_x(x_1)$ . This is because of one-one mapping
  - A value  $x < x_1$  will be mapped into  $z < z_1$
- Define  $w \equiv c_x(x_1)$ , i.e.,  $w \equiv c_z(z_1) \equiv c_x(x_1)$

# Therefore,

•  $z_1 = c_z^{-1}(w) \equiv c_z^{-1}(c_x(x_1))$ 

# Mapping function f(x)

$$z = f(x) = c_z^{-1}(c_x(x))$$

LE Thanh Sach



# Point processing

Logarithmic transformation Exponential transformation Power-law transformation

## Histogram

Definition Computation Equalization

Linear transformation

Logarithmic transformation

Exponential transformation

Histogram

Definition Computation Equalization

- Implementation of  $z = f(x) = c_z^{-1}(c_x(x))$ 
  - 1 If we have closed-form of  $z=c_z^{-1}(w)$  then can use this function to determine z.
  - 2 If we do not have closed-form of  $c_z^{-1}(z)$ 
    - Create a lookup table at the beginning for mapping  $z \to c_z^{-1}(p)$ , for discrete values p. We can do this because we know  $c_z(z)$  in advance. This task is equal to rasterize  $p=c_z(z)$  and store pairs into lookup table
    - Determine z according to the lookup table.