
Obfuscate API calls in Mach-O Binary

Anh Khoa Nguyen
ng.akhoa98@gmail.com

Abstract
The Mach-O binary format serves as the primary executable format in Apple’s Operating
System. Applications within the Apple ecosystem are particularly susceptible to reverse
engineering attacks. To counter these threats, obfuscation techniques applied to the
underlying source code and data have become increasingly prevalent. However, these
methods often require access to source code and custom compiler tooling. Another form of
obfuscation involves direct manipulation of binary files. Currently, this form of obfuscation
for Mach-O binaries is somewhat limited, typically focusing on altering strings with relatively
low impact.
In this paper, we present a novel binary obfuscation approach aims specifically for Mach-O
binaries. Our obfuscation method targets dynamic symbols. The absence of these
symbols renders library function invocations undefined during static analysis. Additionally,
we demonstrate the applicability of our obfuscation technique to Objective-C compiled
applications, which is a common choice in Apple device development. Moreover, our
obfuscation strategy exhibits resilience to memory extraction by not necessitating the
reconstruction of the symbols table.

1 Introduction

Software obfuscation is a widely adopted technique for enhancing software protection during production.
It plays a crucial role in hindering reverse engineering attempts, effectively shielding the application from
easy comprehension and reducing its vulnerability to malicious actors. Beyond that, obfuscation can also
serve as a deterrent against code reuse and intellectual property theft. In the past decade, there have been
strong interest in the obfuscation methods to protect applications. Nowadays, obfuscation is required for high
security, high privacy, high intellectual property applications. These include banking applications, machine
learning/artificial intelligence applications to name a few.

Currently, obfuscation is mostly based on direct source-code manipulation or intermediate representation
during the compilation process. Both of this requires high effort in creating a toolchain capable of
understanding the whole project source-code. Another less common approach is through modifications
of program’s binaries, usually the executable. This method spans into two different ways, direct assembly
instructions modification and binary format modification.

In this paper, we present an innovative approach to obfuscating Mach-O binaries, applicable to both
executables and dynamic libraries. Our method distinguishes itself by primarily concentrating on the removal
of the dynamic symbols table. The absence of this table significantly enhances the complexity of binary
analysis, as function invocations are no longer explicitly defined during static analysis. While targeting
dynamic symbols table can disrupt the loading process of the binary in memory, we take measures to ensure
that the binary loading process remains uninterrupted. Additionally, we extend our obfuscation to obscure
essential information frequently utilized for the static analysis, adding an extra layer of security to the
obfuscated binary. Our method can also obfuscate Objective-C compiled binaries that are commonly seen
in Apple’s devices.

The remainder of this paper is structured as follows: Section 2 offers an in-depth exploration of the
background, encompassing obfuscation techniques, binary analysis, an overview of Apple’s loader, and, more

Obfuscate API calls in Mach-O Binary A Preprint

specifically, the Mach-O binary format. In Section 4, we provide a detailed account of the implementation
process for obfuscating Mach-O binaries. These steps include binary modifications and the restoration of
essential information during runtime. We also address the nuances of obfuscating Objective-C compiled
binaries and introduce additional information that can be leveraged to enhance obfuscation, along with any
associated drawbacks. Finally, in Section 6, we offer our concluding remarks.

2 Background

2.1 Obfuscation

Obfuscation techniques for software have gained significant attention as they offer crucial protection
against reverse engineering and intellectual property theft [11]. These techniques aim to make programs
challenging to understand and analyze. One common approach is direct source-code modification, involving
transformations applied directly to the source code. Tools like Tigress C Obfuscator [13] exemplify this
method, but it is language-specific and relies on the language’s expressive capabilities. Another approach
involves compiler-level obfuscation, which focuses on the compiler’s internal processes. With the widespread
use of LLVM [32], this method has gained momentum, as LLVM provides an intermediate representation
(IR) before translating code into assembly instructions. Obfuscator-LLVM [27] and works integrating LLVM
passes [23, 28, 30, 51, 54, 58, 62] demonstrate how to obfuscate programs by transforming LLVM IR, making
it applicable to multiple programming languages.

Obfuscation techniques often categorized by their distinctive operations, such as control-flow obfuscation,
opaque predicates, substitution of expressions, and code bloat. Control-flow obfuscation, a prominent
approach, seeks to obscure program control flow by employing tactics like control-flow flattening [10, 26,
31, 60, 61] and the introduction of superfluous branching, rendering the program’s logic more intricate and
challenging to decipher. Another technique, opaque predicates [6, 12, 16, 18, 19, 38, 40, 41, 45, 57, 59],
involves constructing instruction sequences that consistently yield a constant value, significantly heightening
the complexity of code analysis. Substitution of expressions replaces equivalent code segments, with complex
methodologies like Mixed Boolean-Arithmetic [63, 64] expressions presenting formidable challenges for
comprehension. Despite efforts to simplify such expressions [20, 21, 35, 36, 49, 50], inherent limitations persist.
Furthermore, obfuscation can extend to the insertion of extraneous statements that maintain the program’s
functionality but purposefully create convoluted code paths, diverting the efforts of reverse engineers. Beyond
these categorized techniques, other obfuscation methods like function fusion [13, 62] and self-modification
[13] exist although not widely used due to its complexity in implementation.

A more intricate obfuscation method, known as the Virtual Machine obfuscation technique [13, 43,
51, 53], is also widely employed. This method involves extracting the program’s functionalities and
reconstructing them into a different code format that is tailored to a specific virtual machine embedded within
the program. Analyzing such obfuscated code is extremely challenging, as it often requires a comprehensive
understanding of the virtual machine’s operation before deciphering the obfuscated program’s logic. This
obfuscation technique can be further enhanced by incorporating multiple virtual machines within a single
program or employing various encodings for the obfuscated code. However, it’s important to note that
implementing this technique can be highly complex and requires designing the virtual machines to vary over
time to prevent adversaries from fully comprehending one machine and then reusing that knowledge.

Source-code and compiler-based obfuscation techniques have proven effective in enhancing software
security. However, they encounter practical challenges related to source-code privacy. An alternative
approach, binary obfuscation, addresses these concerns by targeting compiled binary files. These binaries
encapsulate assembly instructions, program data, and essential execution information for the operating
system. Binary obfuscation aims to eliminate critical information that reverse engineers rely on for their
analysis. Nevertheless, it is essential to note that binary obfuscation is inherently platform-specific. The
predominant focus has been on Windows binaries (commercialized) [29, 43, 53] and Linux [24, 33, 34, 47, 56]
binaries, while Apple binaries have received comparatively limited attention. Some prior work [8, 46, 56] has
proposed modest adjustments to debugging information within the binaries, serving to impede the analysis
capabilities of reverse engineering platforms.

Another widely recognized form of binary obfuscation is known as “packing” [42]. This method involves
compressing or encrypting the binary code and then unpacking it at runtime. However, it’s important to
note that because the code is unpacked during runtime, it remains susceptible to memory extraction, which
could potentially allow an attacker to recover the original code.

2

Obfuscate API calls in Mach-O Binary A Preprint

Lastly, obfuscation should be non-deterministic and unique for each application. Deterministic
obfuscation can be vulnerable to pattern-based recognition and deobfuscation techniques. When different
applications employ similar obfuscation strategies, it becomes possible for attackers to reuse old analysis
methods on newer versions, potentially compromising the security measures in place. To maximize the
effectiveness of obfuscation, it is crucial to introduce variability and uniqueness in the obfuscation process,
making it more challenging for adversaries to develop generalized attack strategies.

2.2 Binary Analysis

Programs are typically compiled from human-readable source code into binary formats that are
understandable by the operating system. These binary files contain data necessary for the operating system to
execute the program, as well as assembly instructions that correspond to the target computer’s architecture.
Currently, there are three major binary file formats used in different operating systems: Portable Executable
(PE) in Windows, Executable and Linkable Format (ELF) in Linux, and Mach-O in Apple devices. These
binary formats are not human-readable due to their raw binary data, and specialized software, known as
binary analysis tools, is used to interpret them. Both free and commercial binary analysis tools are widely
employed in the industry, including Radare2/Rizin/Cutter [2, 14, 15], Ghidra [1], Binary Ninja [24], Hopper
[9], JEB [52], IDA [22], among others. These tools provide analysts with insights into the binary, displaying
its assembly instructions and data.

Binary analysis tools are essential for understanding binary files, but they also rely on various binary
analysis techniques to extract additional information from the binary and its assembly instructions. These
techniques encompass a wide range of functionalities, e.g., uncovering call graphs, determining stack values.
In the context of obfuscation, these techniques are particularly focused on de-obfuscating the binary, often
utilizing approaches such as taint analysis and symbolic execution to unravel the obfuscated code’s logic and
behavior.

2.3 Apple’s loader dyld

The Apple loader [3], known as dyld, is responsible for execution of programs, including loading the
binary and its associated libraries, resolving dynamic symbols, rebasing offsets, and ultimately executing the
binary.

Due to the shared-cache mechanism [25] introduced in iOS 13.5 or macOS 11.0, important libraries,
including system (often referred to as libSystem [4]), C++, Objective-C Runtime [5], Foundation, and
Swift Runtime libraries, are loaded into memory and are only available there. In older versions of Apple’s
operating systems, direct file system access to the dyld loader was possible. However, in recent versions,
such access is no longer feasible as dyld and these libraries are now exclusively in memory since system
boot.

2.4 Mach-O binary format

The Mach-O binary format is inherently complex. To gain a comprehensive understanding of our
proposed obfuscation technique, it is imperative that we closely examine this binary format. It is crucial to
emphasize that our obfuscation methodology does not pertain to the obfuscation of the binary code itself.
Instead, our focus lies in the obfuscation of vital information stored within the binary file. Therefore, a
thorough comprehension of how the Mach-O binary format stores these information is of significance in
understanding our approach.

2.4.1 Basic Mach-O structure

The Mach-O binary format can be comprehensively examined from multiple perspectives. One
fundamental approach is to dissect it based on its encoding of binary data. In this regard, a Mach-O
binary comprises a header, a sequence of load commands, and subsequent raw binary data. The header
provides essential information about the binary, encompassing its type (whether executable or library),
endianness, architecture, and the number of load commands. Load commands, crucial for the loader’s
runtime operations, facilitate the mapping of the binary into memory and the execution of preliminary tasks.
Some load commands reference the raw binary data.

3

Obfuscate API calls in Mach-O Binary A Preprint

Alternatively, another perspective to comprehend the Mach-O binary is through its segmentation.
Typically, the binary consists of three key segments: _TEXT contains assembly instructions; _DATA and
_DATA_CONST store static binary data; _LINK_EDIT segment is dedicated to loader instructions.

2.4.2 Dynamic library load chain

In most cases, programs cannot function as standalone entities but rely on dynamic libraries. These
libraries are registered in the header of Mach-O binaries using commands like LC_DYLIB (or similar
equivalents). These commands establish a load chain, organized in a specific order, and recursively link
each item. In addition to these explicit commands, the loader also dynamically loads libraries that are
essential for the binary’s runtime operation. These may include standard libraries, Foundation libraries, as
well as Objective-C and Swift libraries, among others.

The loader is responsible for locating and loading libraries into memory. These libraries fall into
different categories: system installed libraries and, user-provided libraries are identified by their names
within the LC_DYLIB load command. These names can represent either full or relative paths. Full paths
are self-explanatory, whereas relative paths can be more intricate, involving file system-relative paths or
the use of rpath variables. There are three rpath variables: @executable_path, @loader_path, and
@rpath. They serve as references to libraries, with @executable_path pointing to the location of the
executable, @loader_path indicating the loader’s location, and @rpath being defined through a series of
LC_RPATH commands. Libraries using the @rpath reference will be iteratively replaced through each item
in the LC_RPATH chain to search for the corresponding on-disk file.

System installed libraries, providing system APIs, C++ APIs, and Objective-C
APIs, can be accessed through specific paths like /usr/lib/libSystem.B.dylib,
/usr/lib/libc++.1.dylib, /usr/lib/libobjc.A.dylib. Foundation libraries are made available
via /System/Library/Frameworks/CoreFoundation.framework/*. Swift libraries can be found
and referenced at the path /usr/lib/swift/*. It should be noted that these libraries are only available
in memory, and direct file-system access is unavailable due to the shared-cache mechanism.

2.4.3 Dynamic Symbols

Functions from external libraries are often used as a means of code reuse. When a binary does not
statically link with a library, it must specify the required library and functions statically in its binary format
and will be resolved at runtime. This approach to code reuse is known as dynamic loading. In Mach-O
binaries, all the information necessary for dynamic loading, usually referred to as import table, is spread
across various segments, including _LINK_EDIT, _DATA, and _DATA_CONST. The import table in Mach-O
has undergone several updates over time. The original version of the import table used a custom bytecode
chain, while the updated version introduced in iOS 14 employs fix-ups chains.

During both load time and runtime, the loader of a Mach-O binary reads the import table, searching
for the addresses of symbols, and rewrites them in memory for reference by the executable or library code.
To facilitate this functionality, the binary allocates space for a list of stubs. These stubs serve as templates,
serving as branching targets. When these stubs are resolved by the loader, the target functions become
known, enabling calls to dynamic library functions as shown in Table 1.

foo@address:
0x00000000

foo@stub:
mov x8, [foo@address]
blx x8

main:
call foo@stub

(a)

foo@address:
0xAABBCCDD

foo@stub:
mov x8, [foo@address]
blx x8

main:
call foo@stub

(b)
Table 1: Assembly stubs: (a) Stub before dynamic symbol resolution and, (b) Stub after dynamic symbol
resolution. foo@address in (a) is uninitialized while in (b) it is given a concrete address.

4

Obfuscate API calls in Mach-O Binary A Preprint

2.4.4 Bytecode chain

In the original design of Mach-O binaries, the import table was implemented using bytecode chains.
These chains embody a basic form of a state machine. This bytecode has a special opcode DO_BIND to
determine where a state defines a symbol. This approach optimizes storage by specifying only the changes
between multiple symbol items.

In this design, the binary typically incorporate four different chains, each serving distinct purposes:
Rebase, Non-Lazy, Lazy, and Weak. The Rebase chain is utilized for Position Independent Code (PIC) to
recalculate the correct offset of certain values. Non-Lazy, Lazy, and Weak chains are used for dynamic symbol
resolution but operate at different stages of the binary execution. Non-Lazy symbols must be resolved during
the load time, while Lazy and Weak symbols can be resolved when first called.

Lazy symbols are resolved through an indirect call to the loader, which subsequently reads the bytecode
chain to extract a single symbol and writes back the function address. This process is executed via a
procedure in dyld known as dyld_stub_binder, a Non-Lazy symbol and resolves symbols at specific
addresses. An overview of this type of resolution is given in Table 2.

dyld_stub_binder:
0x11223344

foo@stub_helper:
mov x12, foo_bytecode_offset
mov x8, [dyld_stub_binder]
blx x8

foo@address:
foo@stub_helper

foo@stub:
mov x8, [foo@address]
blx x8

main:
call foo@stub

(a)

dyld_stub_binder:
0x11223344

foo@stub_helper:
mov x12, foo_bytecode_offset
mov x8, [dyld_stub_binder]
blx x8

foo@address:
0xAABBCCDD

foo@stub:
mov x8, [foo@address]
blx x8

main:
call foo@stub

(b)
Table 2: Lazy dynamic symbols resolution: (a) Stub before lazy dynamic symbol resolution and, (b) Stub
after lazy dynamic symbol resolution. foo@address in (a) is initialized with a stub_helper while in
(b) it is given a concrete address. foo_bytecode_offset is template for the offset of foo symbol in the
Lazy bytecode chain.

2.4.5 Fix-ups chain

In later versions of the Mach-O binary format, performance optimization led to the deprecation of
bytecode chains in favor of fix-ups chains. Unlike bytecode chains, fix-ups chains do not separate between
rebasing and dynamic symbol resolution, instead they are processed together. This approach significantly
enhances overall performance by reducing the number of runs through the binary.

In the transition to fix-ups chains, the template values for rebasing and dynamic symbols are encoded
as 8-byte values. These encoded values determine how resolutions are carried out during load time.
Consequently, all resolutions are completed at load time without resorting to lazy resolution.

2.4.6 Export trie

In Mach-O binaries, dynamic symbols that are meant to be discovered during dynamic symbol resolution
are often exported in a structured manner known as an export trie. This data structure resembles a prefix
trie and derives its name from this resemblance. The essential characteristic of an export trie is that all item
share a common root, necessitating that all symbols are prefixed with an underscore.

5

Obfuscate API calls in Mach-O Binary A Preprint

2.4.7 Fat binary

A fat binary is a common type of executable binary used in Apple’s devices. It functions as a wrapper
for a multi-architecture executable, containing a series of Mach-O binaries of a program, each designed for a
different architecture. When submitting applications to Apple, a fat binary is typically required. However,
when a user downloads the application to a specific device, only the Mach-O binary with the corresponding
architecture for that device is actually downloaded and used. This approach ensures compatibility with
various Apple devices while optimizing the download size for each specific target.

3 Related Works

In this section, we survey the existing open-sourced solutions for Mach-O binary obfuscation, focusing
specifically on methods that take a binary as input and produce an obfuscated output. We exclude approaches
that involve decompilation followed by obfuscation on the decompiled code from our consideration, packers
are also excluded due to them being a different kind of obfuscation. This enumeration aims to provide an
overview of the current landscape of Mach-O binary obfuscation techniques that adhere to the specified
criteria.

We first go through a list of common obfuscation techniques on Mach-O binaries, these techniques are
well-known and often suggested, as well as supported, by many. These techniques often involves the removal
of exported symbols. Exported symbols are not mandatory in main executable because the binary entry
point is accessible through the LC_MAIN load command and other symbols are not referenced by another
libraries. Removing the list of exported symbols (and sometimes, public symbols) can be performed easily
through compiler/linker argument invocation or directly remove the associated load commands, LC_SYMTAB
for instance.

Unused sections and data within the binary are also targeted for removal in certain obfuscation methods.
This process is relatively straightforward since these portions of the program are deemed unnecessary for
execution.

Numerous obfuscation methods concentrate on renaming Objective-C symbols, as evident in tools
like MachObfuscator [8] and ios-class-guard [46]. The underlying rationale is straightforward—renaming
Objective-C class names and methods to strings of equal length, often employing random or generated
names. This intentional obfuscation adds complexity for reverse engineers, requiring more effort to decipher
the meaning of classes without the aid of descriptive names.

The Poor Man’s Obfuscator [56] employs a more intricate obfuscation scheme. In this approach, various
load commands are altered to feed incorrect information to binary analysis platforms. The obfuscation
options, referred to as transformations, include actions such as randomizing the names of exported symbols,
redirecting the addresses of exported symbols to different locations, adjusting the offsets and sizes of
sections in load commands, and modifying entries in the LC_FUNCTION_START table. Upon scrutiny,
this obfuscation scheme introduces moderate disruptions that challenge many binary analysis platforms.

4 Implementation

In this section, we present an in-depth exploration of our obfuscation technique tailored specifically for
Mach-O binaries. Initially, we delineate the comprehensive list of information that needs to be extracted,
followed by a detailed explanation of the restoration process during runtime. It’s important to note that
Objective-C compiled binaries are subject to additional considerations and logic in order to preserve the
integrity of the Objective-C runtime environment.

4.1 Design Overview

In our obfuscation approach, the primary objective is to manipulate the load-time data embedded
within the binary. By modifying these critical pieces of information, we render the binary incapable of
successful loading into memory. These information elements frequently serve as crucial inputs for static
analysis tools, such as IDA or Ghidra. Obfuscation of this information creates an environment of partial
knowledge, making it harder for analysts to reverse the binary. A similar obfuscation concept was introduced
in a previous work for Windows PE binaries [29]. However, it’s important to emphasize that our obfuscation
method is specifically designed for Mach-O binaries in the Apple ecosystem.

6

Obfuscate API calls in Mach-O Binary A Preprint

The data required for load-time operations typically comprises directive instructions intended for the
loader. These instructions guides the loader in initializing the binary within the system’s memory. In
our approach, rather than delegating the entirety of this initialization process to the loader, we introduce
a sub-control flow intervention between the binary’s load-in-memory and its execution. This sub-control
protocol is designed to autonomously execute the tasks typically handled by the loader, utilizing the extracted
instructions to ensure the binary’s proper initialization within the system’s memory.

Our obfuscation approach encompasses two distinct designs, both of which execute the same obfuscation
procedure. One of these designs relies on an external library, while the other operates independently. Both
designs share the common goal of eliminating the information utilized during the load process from the binary
format, while simultaneously preserving the ability to load the binary through restoration at runtime.

The initial design of our obfuscation approach incorporates a restoration library, which is integrated into
the dynamic loading sequence of the obfuscated binary. Within this library, essential information is extracted
and stored. As the load chain progresses, the library is invoked to recover all the extracted information by
simulating a segment of the loader’s logic, thereby restoring it in its memory representation.

The use of an external library can be omitted. In this particular design, the extracted data is relocated
into the _DATA section, and the logic for restoring this extracted data to facilitate the completion of the
loading process is introduced through code injection. This addition is made as it was not originally included
within the binary’s inherent logic. Furthermore, the entry pointer is adjusted to point to this injected code,
thus ensuring the completion of the restoration process before the binary’s main procedure is initiated.

As an optional measure, the extracted data can undergo static encryption, with decryption occurring
at load time when our restoration logic is executed. It’s worth noting that our restoration logic may rely on
functions from the loader, potentially exposing the runtime restoration process. To enhance the resilience
of this restoration method, we offer a mechanism to conceal the invocation of these functions through direct
address calling.

4.2 Extracting information

Because our obfuscation tampers the load processes, information for load process is considered for
extracting information. These information is stored in _LINK_EDIT segment. Commands that uses this
segments can be removed if they are not necessary. Our obfuscation chose to extract the information in
LC_DYLD_INFO_ONLY, LC_CHAINED_FIXUPS. In addition, we also extract the list of constructor functions,
these are often initializers and called before the binary’s main procedure.

LC_DYLD_INFO_ONLY load command provides information for the rebasing of bytecode chains, as well
as the management of lazy, non-lazy, and weak imported symbols bytecode chains. In this particular scenario,
we opt to entirely eliminate the lazy and weak bytecode chains. This is accomplished by configuring the
bytecode chain size to a value of 0 within the load command and subsequently overwriting the bytecode
chain section within the _LINK_EDIT segment with random values.

LC_CHAINED_FIXUPS load command offers a sequence of runs containing fix-ups. By traversing these
runs, we can extract all the imported symbols. These symbols are typically stored as indices pointing to
an indexed store of strings, where each index corresponds to the symbol’s name and the hosting library.
To exclude these symbols from the loading process, we undertake a two-fold process. First, we rewrite the
indices for the symbols to reference relocation values. Subsequently, we completely eliminate the string store
that holds the symbol names and library information.

Constructor functions refer to pointers that are invoked by the loader once all images have been loaded
into memory. These functions are called in a sequential and recursive manner as part of the initialization
process. To remove these functions, there are several methods available. One straightforward approach is to
modify the LC_SECTION flag to exclude the section from being listed as constructor pointers. Additionally,
pointers are typically checked to ensure they reside within the binary’s memory region. By adjusting these
pointers to point outside of the memory region, the loader will disregard them, effectively achieving the
removal of these functions.

4.3 Removing redundant information

In the context of Mach-O binary files, it is imperative to acknowledge the presence of data specifically
generated for debugging purposes. This data is automatically generated during the compilation process by
the compiler and linker. It is essential to recognize that this information serves no inherent purpose during

7

Obfuscate API calls in Mach-O Binary A Preprint

runtime and, as such, can be removed. Examples of such debugging-related data are defined in commands
like LC_SYMTAB, LC_DYSYMTAB, LC_FUNCTION_STARTS, and LC_DATA_IN_CODE, among others. Their
exclusion from the binary file does not compromise its functionality during execution but rather streamlines
the binary by eliminating superfluous debugging-related content. The complete removal of this information
effectively prevents basic analysis that relies on these debug symbols to make sense of the binary program.

LC_SYMTAB and LC_DYSYMTAB store a list of symbols in the binary, each entry specifies the name of
the symbol and their relative offset in the binary.

LC_FUNCTION_STARTS stores a list of offsets to functions, this information is for debugging purposes
only.

LC_DATA_IN_CODE defines a list of ranges within the _TEXT segment of a Mach-O binary. These
specified ranges do not contain assembly instructions; rather, they are designated for debugging purposes
exclusively.

DWARF debug information is primarily used to define code locations in the event of a crash but are
not necessary for the execution of the file. Consequently, it is highly recommended to remove these debug
details from the binary to reduce its size and complexity.

Depending on the nature of the load command and its functionality, it may be considered for removal.
Load commands that fall under the category of informative or debugging data are typically candidates for
removal, provided that their absence does not disrupt the overall load process or while executing.

4.4 Restoration

The restoration of extracted information, which is essential for the full loading of the binary, takes place
at runtime. To maintain simplicity in this section, we refrain from discussing the specific storage location of
the extracted information, as this topic will be addressed in subsequent sections.

To initiate the process, we register a constructor function that is scheduled to execute prior to the main
executable. Utilizing the complete set of parameters passed in by the loader, we uncover a specific address,
namely the base address of the main executable loaded in memory, as illustrated in Listing 1.

struct ProgramVars {
void *mh; // mach_header or mach_header64
int *NXArgcPtr;
const char ***NXArgvPtr;
const char ***environPtr;
const char **__prognamePtr;

};

__attribute__((constructor)) static void
restoration(int argc, const char *const argv[], const char *const envp[],

const char *const apple[], const struct ProgramVars *vars) {
const void* main_binary_base = vars->mh;
// ...

}

Listing 1: Using ProgramVars struct

Having obtained the base address of the main executable, we can proceed with the restoration process
by simulating the loader’s actions. For each piece of extracted information, we execute the corresponding
restoration procedure in accordance with its specific logic.

LC_DYLD_INFO_ONLY Maintaining the _LINK_EDIT section as non-writable indeed poses a challenge
when it comes to addressing the issue of fixing the Lazy and Weak bytecode chains. However, the bytecode
chain describes a state machine, where the terminal state involves the finalization of a symbol. This symbol
contains crucial information, including its name, the library that hosts the function, and the address of the
symbol stub.

We can systematically traverse the entire bytecode chain. At each terminal state encountered, we possess
the necessary details to determine the address of the symbol stub, including the symbol’s name and the

8

Obfuscate API calls in Mach-O Binary A Preprint

hosting library. Consequently, we can locate the symbol’s address within the hosting library and subsequently
overwrite the stub with this address, effectively resolving the issue while keeping the _LINK_EDIT section
non-writable.

LC_CHAINED_FIXUPS Fix-ups are distinct from bytecode chains, and their mixed-up nature makes it
impractical to traverse the fix-ups chain directly. However, during the extraction of the fix-ups chain, we
capture comprehensive information for each symbol. This information typically includes the address that
requires fixing, the symbol’s name, and the library in which the symbol is hosted. Armed with this extracted
data, we can effectively resolve each symbol to its corresponding function address, thereby restoring the
fix-ups without the need to traverse the entire fix-ups chain.

Constructor functions can be readily restored, or even more efficiently, directly invoked. The
restoration process involves reinstating the pointers/offsets to their designated locations and allowing the
loader to call them during initialization. Alternatively, we can calculate the function addresses and invoke
them by utilizing the parameters passed to our constructor. It’s worth noting that the loader consistently
passes the same arguments to all constructors during initialization, which enables us to call these functions
manually without reliance on the loader.

In the process of restoring LC_DYLD_INFO_ONLY or LC_CHAINED_FIXUPS, it is essential to have a
method for locating a symbol’s address in another library. This task can be accomplished effectively by
employing the dlsym function, which enables dynamic symbol resolution, making it possible to find the
address of a symbol in the specified library.

It is worth noting that certain fixed locations are designated as read-only. To address this, the
corresponding segment must be defined as writeable at its maximum protection value. As part of the
restoration process, the page containing the fixed location is modified to be writeable, if it was previously
read-only, as demonstrated in Listing 2. This adjustment is essential to facilitate the required modifications
during restoration.

#include <mach/mach.h>
vm_protect(mach_task_self(), offset, size, 0,

VM_PROT_READ | VM_PROT_WRITE);

Listing 2: Modify the virtual memory range from offset to offset+size to Read-Write.

4.5 Objective-C compiled binary

The previously described restoration logic is highly effective when applied to binaries compiled from
C or C++. However, within the Apple ecosystem, Objective-C is a predominant language for application
development. Objective-C is a unique component of Apple’s technology stack and is seamlessly integrated
into the loading process of executables through custom passes. Consequently, addressing the challenges
associated with Objective-C compiled binaries requires a distinct approach. Before delving into these nuances,
it is essential to clarify the synergy between Objective-C and the dyld loader.

4.5.1 Relationship with dyld
The Objective-C runtime is consistently loaded into memory and automatically mapped to the same

virtual memory space as the executable. Within this runtime, a collection of hooks is made available, and
these hooks are strategically employed by the dyld at various stages of the binary loading and unloading
processes. During the initialization of the Objective-C runtime via libSystem, an array of callbacks is
supplied to dyld. The establishment of these hooks is illustrated in Listing 3.

Via the callback structure _dyld_objc_callbacks_v1, the Objective-C runtime registers three
functions at distinct stages of the binary loading and unloading processes: when the binary is mapped into
memory, when the binary is invoked to call constructors, and when the binary is subsequently unmapped
from memory.

4.5.2 Objective-C data in binary

Objective-C compiled binaries include sections identified by the prefix _objc. These sections are
integral to the functioning of the Objective-C runtime, facilitating the initialization of Objective-C classes and

9

Obfuscate API calls in Mach-O Binary A Preprint

// dyld
struct _dyld_objc_callbacks_v1
{

uintptr_t version; // == 1
_dyld_objc_notify_mapped mapped;
_dyld_objc_notify_init init;
_dyld_objc_notify_unmapped unmapped;
_dyld_objc_notify_patch_class patches;

};

void setObjCNotifiers(_dyld_objc_notify_mapped mapped,
_dyld_objc_notify_init init,
_dyld_objc_notify_unmapped unmapped,
_dyld_objc_notify_patch_class patchClass,
_dyld_objc_notify_mapped2 mapped2);

void APIs::_dyld_objc_register_callbacks(const _dyld_objc_callbacks* callbacks) {
// ...
if (callbacks->version == 1) {

const _dyld_objc_callbacks_v1* v1 = (const _dyld_objc_callbacks_v1*)callbacks;
setObjCNotifiers(v1->mapped, v1->init, v1->unmapped, v1->patches, nullptr);

}
// ...

}

// Objc4
void _objc_init(void) {

// ...
_dyld_objc_callbacks_v1 callbacks = {

1, // version
&map_images,
load_images,
unmap_image,
_objc_patch_root_of_class

};
_dyld_objc_register_callbacks((_dyld_objc_callbacks*)&callbacks);
// ...

}

Listing 3: Objc4 and dyld hooks

selectors. In a succinct overview, the Objective-C runtime carries out the initialization of class objects and
selectors when the binary is mapped into memory, Objective-C +load methods are called during constructors
invocation.

Now, we delve into the components that are influenced when extracting information, as described in
Section 4.2. Objective-C employs a specific optimization technique designed to enhance performance. In this
approach, class prototypes are directly stored within the binary. This differs from other Objective Oriented
languages, where class prototypes are allocated alongside object creation using vtable. The advantage of
this approach is that it enables Objective-C to efficiently determine the class of an object. This is achieved
by directing an isa (”is a”) pointer to the corresponding class prototype, statically stored within the binary
file. It’s important to note that within this prototype structure, there exists a parent class pointer. This
parent class pointer is also represented by an isa pointer, which can point either to another prototype within
the binary or to a prototype originating from a library. The parent pointer for classes cannot be 0 (NULL).
Classes that do not have an explicitly defined parent are automatically inherited from the NSObject class.

Objective-C exports class prototypes as a part of the symbols list, ensuring their inclusion in the export
trie. When a parent pointer references a class in another library, the resolution process for fixing these

10

Obfuscate API calls in Mach-O Binary A Preprint

Figure 1: Different Workflows involving dyld, Objective-C Runtime, Foundation, and Restoration: (a)
Without restoration workflow, (b) Restoration process without considering Objective-C, and (c) Restoration
process compatible with Objective-C.

pointers to point to the corresponding class prototypes is managed through mechanisms of bytecode chain
(LC_DYLD_INFO_ONLY) or fix-ups chain (LC_CHAINED_FIXUPS).

All these class prototypes are consolidated into a list within a section named __objc_classlist.
When the binary is mapped into memory, the Objective-C runtime invokes the binary mapping hook,
initiating the process of reading and adding these classes to the internal cache.

Similarly, +load methods are stored within the __objc_nlclslist section. The Objective-C runtime
systematically traverses these functions alongside their corresponding class prototypes in the cache.

4.5.3 Fixing the restoration logic

Our current restoration logic is executed after Objective-C procedures have already run, potentially
resulting in crashes due to incorrectly set pointers in certain class prototypes. Figure 1 illustrates various
workflow versions to help readers understand why the current workflow is problematic. In Figure 1(a), the
workflow depicts Objective-C runtime with dyld only. In Figure 1(b), our current restoration workflow
is combined with Objective-C runtime and dyld. Figure 1(c) illustrates the desired workflow to prevent
crashes during binary loading. To align with the correct workflow and avoid these issues, we need to make
additional modifications to the binary.

1. Rename __objc_classlist section to something else.
2. Rename __objc_nlclslist section to something else.
3. Add a custom shellcode as described in Listing 4 before _TEXT segment.
4. Modify the entry point to the custom shellcode.

Since our restoration logic cannot intervene with the Objective-C runtime, we have opted to modify
the section names within the binary. By doing so, we ensure that the runtime proceeds without executing

11

Obfuscate API calls in Mach-O Binary A Preprint

adr x8, 0
x9 = (offset end of __DATA) - (offset shellcode)
movz x9, #0x9999
add x8, x8, x9

store link register and offset end __DATA
stp x30, x8, [sp], #-0x10

store passed arguments to main
stp x3, x2, [sp], #-0x10
stp x1, x0, [sp], #-0x10

restore objc
ldr x9, [x8]
blr x9

fetch main arguments
ldp x1, x0, [sp, #0x10]!
ldp x3, x2, [sp, #0x10]!
fetch link register and offset end __DATA
ldp x30, x8, [sp, #0x10]!

ldr x9, [x8, #8]
jump to binary's main
br x9
main returns directly to dyld because link register is set correctly

Listing 4: Shellcode inserted (in ARM64)

any operations prematurely and also keep the pointer references to the section’s data. Instead, we execute
it at the appropriate moment within our logic. At the end of our previous restoration logic, we simulated
how the Objective-C runtime utilizes the data within the __objc_classlist section. Our enhanced
restoration logic introduces a new method named restore_objc. This method mimics the initialization
procedure of the Objective-C runtime for the __objc_nlclslist section. During runtime, after all
restoration tasks have been completed, the +load methods of all Objective-C foundation libraries are
invoked. After that, dyld invoke the shellcode that has been inserted. The shellcode’s role is to locate
and call the restore_objc function to execute the +load methods within the binary. Subsequently, the
shellcode jumps to the correct main method of the binary, initiating the execution of the binary itself. This
orchestration ensures that the binary’s initialization proceeds smoothly and in a manner consistent with
Objective-C runtime requirements.

Objective-C logic for processing the class prototypes are done through non-public methods like
readClass, realizeClassWithoutSwift, remapClass, to name a few. These symbols cannot be
found in the export trie. However, they are available in the LC_SYMTAB directives. We can search for these
symbols addresses and rebuild the logic as described in _read_images protocol of Objective-C runtime.

The process of locating the restore_objc procedure can be intricate. To keep the shellcode as
compact as possible, we have opted to store the procedure’s address in a location that can be easily calculated.
Specifically, we have chosen the end of the _DATA segment for this purpose. At this location, the first pointer
value immediately following the end of the segment represents the address of the restore_objc procedure,
while the second pointer value indicates the address of the binary’s main function. These pointer values are
written after the restoration logic.

In theory, the shellcode could be more complex, but it must adhere to the fundamental requirement
of executing the +load methods of the binary as a simulation of the Objective-C runtime’s initialization
procedure.

In practical scenarios, the available space for the shellcode before the _TEXT segment and the number of
pointer values after the _DATA segment may be limited. Hence, it is crucial to keep the shellcode as concise
as possible and minimize the number of required pointer values. It is reasonable to assume that space is

12

Obfuscate API calls in Mach-O Binary A Preprint

generally available since these segments are page-aligned, unless the code and data sizes are exact multiples
of the page size, which would leave no extra space.

In Figure 2, we provide a visual representation of the control flow that occurs when we implement
the aforementioned modifications to ensure our restoration logic functions seamlessly with the Objective-C
runtime. This diagram helps illustrate the step-by-step execution of the modified process.

Figure 2: Shellcode control flow with dyld and main executable. (1) dyld finishes and jump to the entry point
of the main executable, which is replaced to our inserted shellcode; (2) Shellcode calls the restore_objc
function inside the restoration library by looking up the pointer, written by restoration library after resolving
all dynamic API, below _DATA section; (3) restore_objc returns to the shellcode; (4) Shellcode calls the
main function by looking up the pointer below _DATA section.

4.6 Concealing the restoration logic

Up to this point, our discussion has centered on the overarching implementation of the obfuscation logic.
Nonetheless, it’s worth noting that the restoration flow involves numerous calls to library functions, which
can be inspected relatively easily. In this section, we delve into strategies for effectively concealing this logic
by rendering these library function calls imperceptible.

We already possess a fundamental understanding of how the loader resolves symbols into function
addresses using LC_DYLD_INFO_ONLY or LC_CHAINED_FIXUPS. However, it is worthwhile to delve into
greater detail on the precise mechanism by which the loader locates these function addresses. In essence, the
loader maintains a list of loaded libraries. For each loaded library, it utilizes the export trie data structure
to locate public symbols by their symbol names. Consequently, if we are provided with the base address
of a library and a function identifier, we should be able to navigate through the export trie to pinpoint
the function’s address in memory. This elucidates the fundamental concept of using the export trie for
symbol resolution. However, it’s important to acknowledge that at times, a function may be re-exported
from another library. In such scenarios, a recursive search through libraries is necessary to ascertain the
function’s address. This recursive search ensures that the loader can accurately resolve symbols even when
they are re-exported from different libraries.

During the process of locating symbols, it’s important to take into account that symbols may store their
hosting library using relative paths. These relative paths can be expressed either as directory-relative paths
or through path variables such as @rpath, @executable_path, or @loader_path. To ensure accurate
resolution of these relative paths, it is advisable to convert them into their corresponding full paths.

To access the list of loaded libraries in memory, a sequential invocation of three symbols, namely
_dyld_image_count, _dyld_get_image_header, and _dyld_get_image_name, can be employed.
These three symbols collectively offer a means to compile a comprehensive list of loaded libraries as can be
seen in Listing 5. Specifically, _dyld_get_image_header provides the base address of the library at a
specific index, while _dyld_get_image_name returns the full path of the library.

13

Obfuscate API calls in Mach-O Binary A Preprint

#import <mach-o/dyld.h>
uint32_t count = _dyld_image_count();
for(uint32_t i = 0; i < count; i++) {

const char *name = _dyld_get_image_name(i);
const void *header = _dyld_get_image_header(i);

}

Listing 5: Get a list of loaded libraries

Certainly, these three functions can also be concealed from our logic. As previously explained, one merely
requires the library’s base address and the symbol’s name to obtain the function address. Consequently, if
we can locate the base address of the loader, we can access any function available in the export trie without
relying on these three functions explicitly.

We outline a fundamental logic for determining the base address of any library loaded in memory.
Leveraging the loader’s mechanism, the entire binary is loaded into memory as a unified entity, devoid of
segmentation. Given this memory layout, it is observed that the binary’s header consistently resides at a
lower memory address than any function within the binary. Furthermore, owing to memory optimization
practices, the binary is typically mapped onto an address aligned with memory pages. Exploiting these
characteristics, we formulate a straightforward search algorithm that involves iteratively traversing each
memory page while scanning for the Mach-O magic value. The process, named find_header, is illustrated
in Listing 6.

const uint32_t magic64 = 0xfeedfacf;
const uint32_t magic32 = 0xfeedface;

void *find_header(void *_func) {
const uint64_t page_size = 0x1000;
uint64_t func = (uint64_t)_func;
uint64_t start_searching = func + (0x1000 - (func % page_size));
uint32_t *x = (uint32_t *)(start_searching);
while (*x != magic64 && *x != magic32) {

x -= 0x1000 / 4;
}
return (void *)x;

}

Listing 6: Searching for Mach-O base address

Using the find_header procedure, we can locate the base addresses of the libraries loaded in
memory. Applying this approach, we can find the base addresses of three functions: _dyld_image_count,
_dyld_get_image_header, and _dyld_get_image_name. It’s important to note that we only need
one function in dyld to discover its base address. To maintain a lower profile and make our logic less
conspicuous, we typically choose a relatively inconspicuous function, such as dyld_get_sdk_version.
This choice of function minimizes any insights it might offer to reverse engineers analyzing our logic.

At this stage, our logic can be obscured by manually determining the addresses of functions within
libraries. This allows us to execute all function calls through intermediate values, making our logic less
discernible to potential reverse engineering efforts.

Now, let’s discuss where the extracted information can be stored. There are several approaches to
consider:

1. Inside the Restoration Library: The simplest approach is to include the extracted information
as part of the data within the restoration library. This keeps everything self-contained within the
library, but requires a re-compilation of the restoration library for each obfuscated binary.

2. Separated File: You can store the information in a separate file and load it at runtime using
an open file procedure. This approach provides flexibility and makes it easier to manage the data
independently.

14

Obfuscate API calls in Mach-O Binary A Preprint

3. _DATA Segment of the Obfuscated Binary: Storing the information within the _DATA
segment of the obfuscated binary itself is more complex. It may require resizing the segment, and if
the segment becomes larger than originally planned, it can lead to complicated relocation processes,
potentially causing issues with pointer references.

4. Another Library: You can create another library specifically for storing the information,
containing only a _DATA segment. During runtime, the restoration library can access this separate
library to retrieve the information needed for restoration. The Mach-O loader’s permits the loading
of binary files that adhere to the Mach-O format. This flexibility opens doors to the creation of
custom Mach-O binaries designed for storing and loading extracted information.

5. Internet Storage: For more dynamic retrieval, you can consider storing the information on the
internet and fetching it at runtime. This approach provides the flexibility to update the information
remotely, but it also introduces dependencies on external servers and network availability, as well as
high latency.

The choice of where to store the information depends on your specific requirements, complexity
considerations, and performance needs. Each method has its pros and cons, and the decision should align
with the goals of your obfuscation technique.

As a best practice, it is advisable to encrypt this information, decrypting it only when necessary
for restoration. This additional layer of obfuscation ensures that the data remains inaccessible to human
inspection, enhancing overall security and protection.

4.7 Future Works

We have outlined the fundamental aspects of our method, but it’s essential to note that our approach
can be further enhanced to achieve more advanced levels of obfuscation. These enhancements require extra
work and substantial effort to implement fully. We are eager to delve into these potential upgrades to provide
a deeper understanding of the significant obfuscation capabilities offered by our method.

4.7.1 Obfuscate restoration library

Our obfuscation method relies on an external library, initially designed solely for restoration purposes.
However, to bolster security, this library should now encompass additional runtime protections, such as
detecting Jailbroken devices or identifying Frida hooking attempts. These procedures, when implemented
with system APIs, are exposed to analysts. Fortunately, our library can also obfuscate itself using our
obfuscation method. As long as the extracted data (of itself) is accessible during runtime, our library can
first restore itself and then proceed with the restoration of the targeted obfuscated binary. It can also
be obfuscated using other obfuscation techniques to obscure the underlying logic used for decrypting the
extracted data and the restoration workflow. This added layers of obfuscation enhances the resilience of our
restoration library.

4.7.2 Obfuscate multiple binaries

While we have primarily discussed the obfuscation of a single binary, it’s essential to recognize that
multiple binaries can undergo obfuscation using the same process. The key distinction is that all obfuscated
binaries must be resolved at runtime. Typically, we aim to obfuscate the main executable and its required
libraries.

Expanding on this, as we outlined in our method, we rely on the export trie mapped in memory for each
dynamic symbol. What if we also remove the export trie for the libraries we obfuscate? By extracting the
export trie data from these libraries, they no longer contain any public information about their functions.
However, our restoration library can still perform the restoration process because it now possesses knowledge
of all the libraries’ export tries.

The approach of fully obfuscating all binaries within a package is an extreme implementation of our
method. While it significantly enhances security by creating a substantial challenge for reverse engineers
trying to understand the application, it comes with a trade-off in terms of startup time. Apple tends to
reject applications that take too long to start up, and users can become frustrated if the app has a slow
startup time.

15

Obfuscate API calls in Mach-O Binary A Preprint

4.8 Objective-C method names

Our obfuscation method provides erasure of static API invocations. However, in Objective-C the
functions are dynamically dispatched through message passing. The message usually contains the name
of the method to be invoked. The proposed methods are not able to hide these names. Given the prevalence
of Objective-C based binaries, mostly through programs written in Swift, our method would be greatly
enhanced if these names can be erased as well.

Through our experiment, we can confidently say that these Objective-C method names can be erased
and recovered during the runtime by simulating the Objective-C logic. However, we have not fully explored
this approach to deliver a well-written instruction. Nevertheless, our proposed method can be extended to
include obfuscation of Objective-C method names to completely remove all1 API invocations.

4.8.1 Function Hooking

At the core of our obfuscation method, which focuses on restoring dynamic symbols, lies a technique
that enables us to directly modify these symbols. This capability opens the door to function replacement,
commonly known as function hooking. Function hooks are frequently employed to intercept the invocation
of a function, serving various purposes, including security enhancements and logging.

To override a library’s functions using function hooks, we start by creating our customized version of
the function ensuring that the parameters, and the return type matches the original function. Due to the
deterministic nature of compilers, especially with architecture-dependent compilation, we can be confident
that the registers used for passing arguments and return values are set correctly. Then, at runtime, we locate
the placeholder for the dynamic symbol and write the address of our hook function to effectively replace the
original function with our custom implementation.

Function hooking is a prominent topic in the field of security, and it has evolved with tools like Frida
[48] and Fishhook [17]. Frida allows developers to inject hooks at arbitrary addresses, Fishhook allows
developers to replace the body of a function at runtime after some setup procedures. However, the hooking
method we’ve described here is distinct from Frida’s approach, rather it’s quite similar to Fishhook but on
a binary level. While we don’t have the flexibility to hook arbitrary addresses, our method enables us to
modify function invocations, directing them to our custom functions through dynamic symbol resolution.
This approach is particularly valuable when we need to intercept and modify system API calls, such as file
opening (e.g., fopen), or when we want to disable certain functions from being called altogether.

5 Evaluation

Our obfuscation method is implemented through a custom set of tools and libraries designed for working
with Mach-O binary files. The tools perform parsing of the binary format and apply the obfuscation methods
described earlier to obfuscate any valid Mach-O input file.

After processing the input binary, the tools generate a file containing the extracted information, which is
required for restoration. Additionally, we provide a restoration library that utilizes this extracted information
(as detailed in Section 4.6) to perform the restoration process at runtime.

The obfuscated binary has its dynamic symbols table extracted, along with crucial class prototypes
commonly used in Objective-C applications. Importantly, these pieces of information are not rewritten
during the restoration process. Even if memory extraction occurs, the binary remains obfuscated.

In this section, we conduct a series of evaluations to assess the difficulty of de-obfuscation (rebuilding
the original non-obfuscated binary), quantify the extent of information loss after obfuscation, and provide a
summary of tests for stability and performance across a variety of applications.

5.1 De-obfuscation

De-obfuscation involves reconstructing the imports table. To achieve this, the necessary information
includes a comprehensive list of symbols. Initially, the binary must be parsed to expose all pointer addresses
corresponding to symbols. Subsequently, during runtime, if the reverse engineer can establish memory

1Unless the binary is compiled by a language with different API invocations like Objective-C which is rare.

16

Obfuscate API calls in Mach-O Binary A Preprint

connections to inspect where these pointer addresses lead, determining the associated functions and libraries,
they can rebuild the imports table.

Despite the initial impression of simplifying the steps involved in de-obfuscation, the process encounters
several challenges due to the unique construction of Mach-O binaries.

One significant challenge is the requirement for the reverse engineer to understand how the imports
table is structured, encompassing both Bytecode chain and Fix-ups chain.

Additionally, discovering all pointer addresses poses another hurdle. As Mach-O binaries consolidate
most of these pointers in one location to resolve dynamic symbols, the failure to identify all pointer addresses
may result in an incomplete reconstructed imports table.

Furthermore, the connection between pointer address values and the imports table follows a specific
logic. In the case of Bytecode chain, the reconstructed imports table must retain the index specified in the
stub helper. For Fix-ups chain, the pointer address value must be encoded to correctly point to the relevant
symbol in the imports table.

To recover the symbols, the process must occur either at runtime or by accessing statically stored, highly
secured extracted information. Assuming the latter is challenging to obtain, the reverse engineer faces the
task of inspecting the binary at runtime to obtain a version where all pointer addresses are bound to a
symbol. Some symbols are referenced by libraries that are mapped randomly on each execution, particularly
non-system libraries. These symbols are bound to a virtual address that only holds for each execution.
Consequently, the reverse engineer must either rebuild the imports table at runtime or record the virtual
addresses of all loaded images for later resolution on a modified version of the binary.

Indeed, the challenges outlined do not do not pose an obstacle, but they demand a sophisticated approach
from the reverse engineer to de-obfuscate our proposed binary obfuscation. This process involves a profound
understanding of internal structures and necessitates runtime injection. That is why the obfuscation should
also implement runtime checks to stop tampering attempts, preventing the reverse engineer from recovering
the imports table as a side measure.

The de-obfuscation of Objective-C data is rather easy. All pointers should be resolved due to the above
steps already. For Objective-C +load methods, we perform the rename of the section __objc_nlclslist,
to de-obfuscate, this section should be renamed back for Objective-C to register all +load methods during
load time.

Constructors are harder to recover, because we do not write them back but we perform direct invocation.
The reverse engineer needs to monitor (debug) the program at load time to figure out these functions calls
and rebuild the constructors section.

5.2 Lost information

In this section, we conducted a comprehensive evaluation by obfuscating a diverse set of binaries, aiming
to understand the extent of lost information in various dimensions.

5.3 Stability and Performance

Continuing from the previous section, we proceeded to evaluate the stability of our obfuscation methods
and measured the resulting impact on the performance of the same set of binaries. This assessment aimed
to gauge the robustness of our obfuscation techniques under various conditions and assess any potential
trade-offs in terms of computational efficiency.

6 Conclusion

Throughout this paper, we have presented a comprehensive overview of obfuscation techniques for Apple
device applications. We introduced our innovative approach to obfuscating these applications by directly
manipulating the Mach-O binary, focusing on dynamic symbols that are resolved by the loader. The removal
of these symbols poses a significant challenge for static analysis, as it eliminates visible dynamic library
invocations. Moreover, these symbols are dynamically resolved at runtime without the need to rebuild the
symbol table, making them resilient even in the face of memory extraction attempts to reconstruct the binary
in memory. We have demonstrated the applicability of this obfuscation technique to Objective-C compiled
applications, a common choice for software running on Apple’s devices. While the assembly instructions

17

Obfuscate API calls in Mach-O Binary A Preprint

remain unchanged and may be comprehensible to experienced reverse engineers, the removal of dynamic
symbols significantly hinders the analysis process. Overall, our approach offers a promising strategy for
enhancing the protection of Mach-O binaries against reverse engineering attacks in the Apple ecosystem.

References
[1] National Security Agency. Ghidra. URL https://ghidra-sre.org/.
[2] Sergi Alvarez. Radare2. URL https://rada.re/.
[3] Apple. dyld, . URL https://opensource.apple.com/source/dyld/.
[4] Apple. LibSystem, . URL https://opensource.apple.com/source/Libsystem/.
[5] Apple. Objective-C Runtime, . URL https://opensource.apple.com/source/objc4/.
[6] Genevieve Arboit. A method for watermarking java programs via opaque predicates. In The Fifth

International Conference on Electronic Commerce Research (ICECR-5), pages 102–110. Citeseer, 2002.
[7] Sebastian Banescu, Christian Collberg, Vijay Ganesh, Zack Newsham, and Alexander Pretschner. Code

obfuscation against symbolic execution attacks. In Proceedings of the 32nd Annual Conference on
Computer Security Applications, ACSAC ’16, page 189–200, New York, NY, USA, 2016. Association
for Computing Machinery. ISBN 9781450347716. doi:10.1145/2991079.2991114. URL https://doi.
org/10.1145/2991079.2991114.

[8] Kamil Borzym. MachObfuscator. URL https://github.com/kam800/MachObfuscator/.
[9] Vincent Bénony. Hopper. URL https://www.hopperapp.com/.

[10] Jan Cappaert and Bart Preneel. A general model for hiding control flow. In Proceedings of the tenth
annual ACM workshop on Digital rights management, pages 35–42, 2010.

[11] Christian Collberg, Clark Thomborson, and Douglas Low. A taxonomy of obfuscating transformations.
Technical report, Department of Computer Science, The University of Auckland, New Zealand, 1997.

[12] Christian Collberg, Clark Thomborson, and Douglas Low. Manufacturing cheap, resilient, and stealthy
opaque constructs. In Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 184–196, 1998.

[13] Christian Collberg, Sam Martin, Jonathan Myers, and Jasvir Nagra. Distributed application tamper
detection via continuous software updates. In Proceedings of the 28th Annual Computer Security
Applications Conference, ACSAC ’12, pages 319–328, New York, NY, USA, 2012. ACM. ISBN
978-1-4503-1312-4. doi:10.1145/2420950.2420997. URL http://doi.acm.org/10.1145/2420950.
2420997.

[14] Rizin Community. Cutter, . URL https://cutter.re/.
[15] Rizin Community. Rizin, . URL https://rizin.re/.
[16] Stephen Drape. Intellectual property protection using obfuscation. 2010.
[17] Facebook. fishhook. URL https://github.com/facebook/fishhook/.
[18] Roberto Fellin and Mariano Ceccato. Experimental assessment of xor-masking data obfuscation based

on k-clique opaque constants. Journal of Systems and Software, 162:110492, 2020.
[19] Roberto Fellin and Mariano Ceccato. Experimental assessment of xor-masking data obfuscation based

on k-clique opaque constants. Journal of Systems and Software, 162:110492, 2020.
[20] Weijie Feng, Binbin Liu, Dongpeng Xu, Qilong Zheng, and Yun Xu. Neureduce: Reducing mixed

boolean-arithmetic expressions by recurrent neural network. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pages 635–644, 2020.

[21] Adrien Guinet, Ninon Eyrolles, and Marion Videau. Arybo: Manipulation, canonicalization and
identification of mixed boolean-arithmetic symbolic expressions. In GreHack 2016, 2016.

[22] Hex-Rays. IDA. URL https://hex-rays.com/ida-pro/.
[23] Chengyang Li Tianbo Huang, Xiarun Chen, Chenglin Xie, and Weiping Wen. iOLLVM: Enhanced

version of OLLVM. In Artificial Intelligence Trends & Technologies. Academy and Industry Research
Collaboration Center (AIRCC), feb 2022. doi:10.5121/csit.2022.120409. URL https://doi.org/10.
5121%2Fcsit.2022.120409.

[24] Vector 35 Inc. Binary Ninja. URL https://binary.ninja/.

18

https://ghidra-sre.org/
https://rada.re/
https://opensource.apple.com/source/dyld/
https://opensource.apple.com/source/Libsystem/
https://opensource.apple.com/source/objc4/
https://doi.org/10.1145/2991079.2991114
https://doi.org/10.1145/2991079.2991114
https://doi.org/10.1145/2991079.2991114
https://github.com/kam800/MachObfuscator/
https://www.hopperapp.com/
https://doi.org/10.1145/2420950.2420997
http://doi.acm.org/10.1145/2420950.2420997
http://doi.acm.org/10.1145/2420950.2420997
https://cutter.re/
https://rizin.re/
https://github.com/facebook/fishhook/
https://hex-rays.com/ida-pro/
https://doi.org/10.5121/csit.2022.120409
https://doi.org/10.5121%2Fcsit.2022.120409
https://doi.org/10.5121%2Fcsit.2022.120409
https://binary.ninja/

Obfuscate API calls in Mach-O Binary A Preprint

[25] iPhoneDev. dyld shared cache. URL https://iphonedev.wiki/Dyld_shared_cache/.
[26] Björn Johansson, Patrik Lantz, and Michael Liljenstam. Lightweight dispatcher constructions for

control flow flattening. In Proceedings of the 7th Software Security, Protection, and Reverse
Engineering/Software Security and Protection Workshop, pages 1–12, 2017.

[27] Pascal Junod, Julien Rinaldini, Johan Wehrli, and Julie Michielin. Obfuscator-llvm – software protection
for the masses. pages 3–9, 05 2015. doi:10.1109/SPRO.2015.10.

[28] Seoyeon Kang, Sujeong Lee, Yumin Kim, Seong-Kyun Mok, and Eun-Sun Cho. Obfus: An obfuscation
tool for software copyright and vulnerability protection. In Proceedings of the Eleventh ACM Conference
on Data and Application Security and Privacy, pages 309–311, 2021.

[29] Yuhei Kawakoya, Eitaro Shioji, Yuto Otsuki, Makoto Iwamura, and Takeshi Yada. Stealth loader:
Trace-free program loading for api obfuscation. In Research in Attacks, Intrusions, and Defenses: 20th
International Symposium, RAID 2017, Atlanta, GA, USA, September 18–20, 2017, Proceedings, pages
217–237. Springer, 2017.

[30] Pengwei Lan, Pei Wang, Shuai Wang, and Dinghao Wu. Lambda obfuscation. In Security and Privacy
in Communication Networks, 2017. URL https://api.semanticscholar.org/CorpusID:
19169928.

[31] Tımea László and Ákos Kiss. Obfuscating c++ programs via control flow flattening. Annales
Universitatis Scientarum Budapestinensis de Rolando Eötvös Nominatae, Sectio Computatorica, 30
(1):3–19, 2009.

[32] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong Program Analysis
& Transformation. In Proceedings of the 2004 International Symposium on Code Generation and
Optimization (CGO’04), Palo Alto, California, Mar 2004.

[33] Byoungyoung Lee, Yuna Kim, and Jong Kim. binob+ a framework for potent and stealthy binary
obfuscation. In Proceedings of the 5th ACM Symposium on Information, Computer and Communications
Security, pages 271–281, 2010.

[34] Cullen Linn and Saumya Debray. Obfuscation of executable code to improve resistance to static
disassembly. In Proceedings of the 10th ACM conference on Computer and communications security,
pages 290–299, 2003.

[35] Binbin Liu, Junfu Shen, Jiang Ming, Qilong Zheng, Jing Li, and Dongpeng Xu. {MBA-Blast}: Unveiling
and simplifying mixed {Boolean-Arithmetic} obfuscation. In 30th USENIX Security Symposium
(USENIX Security 21), pages 1701–1718, 2021.

[36] Binbin Liu, Qilong Zheng, Jing Li, and Dongpeng Xu. An in-place simplification on mixed
boolean-arithmetic expressions. Security and Communication Networks, 2022, 2022.

[37] Nikos Mavrogiannopoulos, Nessim Kisserli, and Bart Preneel. A taxonomy of self-modifying code for
obfuscation. Computers & Security, 30(8):679–691, 2011.

[38] Andreas Moser, Christopher Kruegel, and Engin Kirda. Limits of static analysis for malware detection.
In Twenty-third annual computer security applications conference (ACSAC 2007), pages 421–430. IEEE,
2007.

[39] Dongliang Mu, Jia Guo, Wenbiao Ding, Zhilong Wang, Bing Mao, and Lei Shi. Ropob: obfuscating
binary code via return oriented programming. In Security and Privacy in Communication Networks:
13th International Conference, SecureComm 2017, Niagara Falls, ON, Canada, October 22–25, 2017,
Proceedings 13, pages 721–737. Springer, 2018.

[40] Ginger Myles and Christian Collberg. Software watermarking via opaque predicates: Implementation,
analysis, and attacks. Electronic Commerce Research, 6(2):155–171, 2006.

[41] Ginger Myles and Christian Collberg. Software watermarking via opaque predicates: Implementation,
analysis, and attacks. Electronic Commerce Research, 6(2):155–171, 2006.

[42] Markus FXJ Oberhumer. Upx the ultimate packer for executables. http://upx. sourceforge. net/, 2004.
[43] Oreans. Themida. URL https://www.oreans.com/Themida.php/.
[44] JJ O’Connor and EF Robertson. Lothar collatz. St Andrews University School of Mathematics and

Statistics, Scotland, 2006.
[45] Jens Palsberg, Sowmya Krishnaswamy, Minseok Kwon, Di Ma, Qiuyun Shao, and Yi Zhang. Experience

with software watermarking. In Proceedings 16th Annual Computer Security Applications Conference
(ACSAC’00), pages 308–316. IEEE, 2000.

19

https://iphonedev.wiki/Dyld_shared_cache/
https://doi.org/10.1109/SPRO.2015.10
https://api.semanticscholar.org/CorpusID:19169928
https://api.semanticscholar.org/CorpusID:19169928
https://www.oreans.com/Themida.php/

Obfuscate API calls in Mach-O Binary A Preprint

[46] Polidea. ios-class-guard. URL https://github.com/Polidea/ios-class-guard/.
[47] Igor V Popov, Saumya K Debray, and Gregory R Andrews. Binary obfuscation using signals. In USENIX

Security Symposium, pages 275–290, 2007.
[48] Ole André V. Ravnås. Frida. URL https://frida.re/.
[49] B. Reichenwallner and P. Meerwald-Stadler. Simplification of general mixed boolean-arithmetic

expressions: Gamba. In 2023 IEEE European Symposium on Security and Privacy Workshops
(EuroS&PW), pages 427–438, Los Alamitos, CA, USA, jul 2023. IEEE Computer Society.
doi:10.1109/EuroSPW59978.2023.00053. URL https://doi.ieeecomputersociety.org/10.
1109/EuroSPW59978.2023.00053.

[50] Benjamin Reichenwallner and Peter Meerwald-Stadler. Efficient deobfuscation of linear mixed
boolean-arithmetic expressions. In Proceedings of the 2022 ACM Workshop on Research on offensive
and defensive techniques in the context of Man At The End (MATE) attacks, pages 19–28, 2022.

[51] Moritz Schloegel, Tim Blazytko, Moritz Contag, Cornelius Aschermann, Julius Basler, Thorsten Holz,
and Ali Abbasi. Loki: Hardening code obfuscation against automated attacks. In 31st USENIX Security
Symposium (USENIX Security 22), pages 3055–3073, 2022.

[52] PNF Software. JEB, . URL https://www.pnfsoftware.com/.
[53] VMProtect Software. VMProtect, . URL https://vmpsoft.com/vmprotect/overview/.
[54] Romain Thomas. O-MVLL. URL https://obfuscator.re/omvll/.
[55] Romain Thomas. Lief-library to instrument executable formats. Retrieved February, 22:2022, 2017.
[56] Romain Thomas. The Poor Man’s Obfuscator, 2022. URL https://www.romainthomas.fr/

publication/22-pst-the-poor-mans-obfuscator/.
[57] Roberto Tiella and Mariano Ceccato. Automatic generation of opaque constants based on the k-clique

problem for resilient data obfuscation. In 2017 IEEE 24th International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 182–192. IEEE, 2017.

[58] Yan Wang, Shuai Wang, Pei Wang, and Dinghao Wu. Turing Obfuscation, pages 225–244. 01 2018.
ISBN 978-3-319-78812-8. doi:10.1007/978-3-319-78813-5_12.

[59] Dongpeng Xu. Opaque predicate: Attack and defense in obfuscated binary code. 2018.
[60] Khaled Yakdan, Sebastian Eschweiler, Elmar Gerhards-Padilla, and Matthew Smith. No more

gotos: Decompilation using pattern-independent control-flow structuring and semantic-preserving
transformations. In NDSS. Citeseer, 2015.

[61] Jiajia Yi, Lirong Chen, Haitao Zhang, Yun Li, and Huanyu Zhao. A security model and implementation
of embedded software based on code obfuscation. In 2020 IEEE 19th International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom), pages 1606–1613. IEEE, 2020.

[62] Peihua Zhang, Chenggang Wu, Mingfan Peng, Kai Zeng, Ding Yu, Yuanming Lai, Yan Kang, Wei Wang,
and Zhe Wang. Khaos: The impact of inter-procedural code obfuscation on binary diffing techniques.
In Proceedings of the 21st ACM/IEEE International Symposium on Code Generation and Optimization,
pages 55–67, 2023.

[63] Yongxin Zhou and Alec Main. Diversity via code transformations: A solution for ngna renewable
security. NCTA-The National Show, 2006.

[64] Yongxin Zhou, Alec Main, Yuan X Gu, and Harold Johnson. Information hiding in software with mixed
boolean-arithmetic transforms. In International Workshop on Information Security Applications, pages
61–75. Springer, 2007.

20

https://github.com/Polidea/ios-class-guard/
https://frida.re/
https://doi.org/10.1109/EuroSPW59978.2023.00053
https://doi.ieeecomputersociety.org/10.1109/EuroSPW59978.2023.00053
https://doi.ieeecomputersociety.org/10.1109/EuroSPW59978.2023.00053
https://www.pnfsoftware.com/
https://vmpsoft.com/vmprotect/overview/
https://obfuscator.re/omvll/
https://www.romainthomas.fr/publication/22-pst-the-poor-mans-obfuscator/
https://www.romainthomas.fr/publication/22-pst-the-poor-mans-obfuscator/
https://doi.org/10.1007/978-3-319-78813-5_12

	Introduction
	Background
	Obfuscation
	Binary Analysis
	Apple's loader dyld
	Mach-O binary format
	Basic Mach-O structure
	Dynamic library load chain
	Dynamic Symbols
	Bytecode chain
	Fix-ups chain
	Export trie
	Fat binary

	Related Works
	Implementation
	Design Overview
	Extracting information
	Removing redundant information
	Restoration
	Objective-C compiled binary
	Relationship with dyld
	Objective-C data in binary
	Fixing the restoration logic

	Concealing the restoration logic
	Future Works
	Obfuscate restoration library
	Obfuscate multiple binaries

	Objective-C method names
	Function Hooking

	Evaluation
	De-obfuscation
	Lost information
	Stability and Performance

	Conclusion

