
Live Memory Forensics without RAM Extraction
1st Anh Khoa Nguyen 2nd Dung Vo Van Tien 3rd Khuong Nguyen-An

Abstract—Memory forensics is a widely used technique in
malware hunting. In this technique, researchers try to extract
information from the Windows kernel space to learn more about
the behavior of every program on the system. Traditionally,
there are two ways to access these information: calling Windows
API or memory analysis. However, both methods have their
own limitations. Firstly, Windows often withholds some critical
runtime information of the kernel. Therefore, we can miss some
valuable data if we rely solely on functions from the Windows
API. The other approach, memory analysis, most of the time
involves processing a memory dump file, which is a complicated
and time-consuming process. In this paper, we present a method
to perform memory forensics on a Windows machine that avoids
the use of Windows APIs or memory dump. This approach allows
us to directly access system information in the kernel space
without calling Windows APIs. It can also perform memory
analysis on a currently running machine to detect suspicious
behavior, which is usually only found when analyzing memory
dumps during malware analysis. With a little extension, it can
also act as a live WinDBG. The proposed method is implemented
in an open-sourced framework called LPUS. This is a valuable
tool for system administrators, security researchers, and malware
analysts. It can be used to gain a deeper understanding of the
Windows kernel and to detect malicious activities.

Index Terms—pool scanning, pool tag scanning, Windows
memory forensics, page table entry, live memory forensics

I. INTRODUCTION

Malware are malicious software designed with the intention
of causing damage to computer systems. Nowadays, as
computer usage continues to rise, the risk of malware attacks is
also growing. One of the most effective and popular methods
to detect traces of malware on a system is memory forensics.
It is a method to extract system information from a snapshot
of a computer’s memory (memory image). Memory forensics
can give analysts valuable data about processes, threads, files,
drivers, network connections, .etc at the time of the malware
attack. A subset within the field of memory forensics is live
memory forensics, which involves an investigator looking for
evidence in real time on a running machine.

A. Motivation

Currently, most memory forensics tools rely heavily on
system memory extraction. There are not many ways for
investigators to perform live forensics on a computer system.
Our objective is to develop a tool that enables live memory
forensics to utilize the same techniques used on memory
images.

Over the years, extensive research has been conducted
on Windows kernel memory, resulting in a comprehensive
understanding of its workings. Many forensics techniques use
this knowledge for extracting information from a memory

image. One such technique, called pool tag (quick) scanning,
can be enhanced to enable real-time scanning on a running
system.

Along with pool tag scanning, other techniques that are
widely used on memory images could also be utilized for live
forensics. By examining internal structures of the Windows
kernel for memory paging like Page Table Entry or Page
Frame Number Database, we can correctly identify various
code injection techniques, which are used widely in malware
to avoid detection.

B. Contributions

The contributions of this paper are:
• A method to perform pool tag scanning on a live machine.
• A method to detect code injection techniques on a live

machine
• A live memory forensics tool capable of extracting

system information and detecting potentially malicious
behaviors.

II. WINDOWS OS BACKGROUND

In this section, we will clarify terms relevant to the Windows
Operating System. These terms are important for readers to
establish a fundamental background on Windows, which is
essential for understanding concepts in Memory Forensics
techniques for the Windows platform.

A. Access Tokens and Process Privileges

In the Windows operating system, Access Tokens [34] play
a vital role in managing what actions a program can perform.
These tokens are associated with specific users and are copied
into the program’s context . Access Tokens hold a list of
permissions that dictate what the program can do. For instance,
if a program lacks the SeShutdownPrivilege in its token,
it won’t have the privilege to shut down the system.

A program is equipped with only a portion of the
privileges available to the user. If the program needs
to activate a privilege that is initially inactive, it must
first obtain access to the Access Token and change the
privilege’s status. However, this adjustment of the token is
subject to a safeguard; the process must also possess the
TOKEN_ADJUST_PRIVILEGES privilege. The adjustment
of process’ token are illustrated in Listing I.

B. Virtual address space

Address virtualization is a common memory management
method used in many modern operating systems. In this
method, a process does not access data in RAM using raw



LPCTSTR privilege;
TOKEN_PRIVILEGES tp;
LUID luid;

assert(LookupPrivilegeValue(
NULL,
privilege,
&luid));

assert(AdjustTokenPrivileges(
hToken,
FALSE,
&tp,
sizeof(TOKEN_PRIVILEGES),
(PTOKEN_PRIVILEGES) NULL,
(PDWORD) NULL));

Listing I: Adjustment of Process Privileges

offset, and instead uses a layer of abstraction, called virtual
address (or logical address). Each process running on the
system will be given a continuous range of addresses, called a
virtual address space. This address space will be divided into
many pages for easy management and allocation. Each page
in the virtual address space will be mapped to a corresponding
memory region in the physical memory.

The processor handles the paging of physical memory [12],
[27]. This involves using a set of pointer tables to define a
specific virtual address. Along with the CR3 register, which
points to the first table, the virtual address can be divided
into components. These components are used to navigate
through each nested table, allowing for the calculation of the
corresponding physical address. The calculation from virtual
address to physical address is called address translation and is
illustrated in Figure 1.

Within the Windows operating system, processes can be
categorized into two distinct types. First, there are user-mode
processes, e.g., web browsers and notepad. Each of these
user-mode processes operates within its own isolated virtual
address space, which is further divided into two segments: the
user-space and the kernel-space. On the other hand, we have
kernel-mode processes, which encompass critical components
of the operating system, such as the kernel and drivers.
These kernel-mode processes share a common virtual address
space. This shared address space of kernel-mode processes is
then mapped to the system address space of all user-mode
processes.

C. Windows kernel pool

The kernel pool in Windows is the heap section for
kernel-mode processes. Windows reserves multiple pools for
different allocation purposes. The two most general types of
pools are paged pool and non-paged pool, both serve as general
pools for object allocation. Paged pools allow the content to
be paged out while data in the non-paged pool are guaranteed
to be in physical memory at all times.

An allocation in a pool is called a block. A block has
two main sections, the header, and the data. The header is
a structure named _POOL_HEADER containing information

Structure Structure Name Pool Tag
Driver Object DRIVER OBJECT Driv
File Object FILE OBJECT File
Process EPROCESS Proc
Thread ETHREAD Thre
TCP endpoint TcpE
TCP listener TcpL
UDP endpoint UdpA

TABLE I
LIST OF OBJECTS AND THEIR POOL TAG

about the block itself, such as the size of the block, the
previous block size, the index of the block in the memory page,
and a tag value. The tag value is a required four-byte value that
is given when Windows allocates a kernel space through APIs
such as ExAllocatePoolWithTag [36]. This tag value,
also called pool tag, is used by Windows operating system
developers and kernel driver developers to reference the data
they want to store. As a rule of thumb, developers usually
define and use tags that are somewhat related to their drivers.
A table of tag values and their related Windows structures is
provided in Table I.

D. Windows Kernel

The Windows kernel contains structures responsible for the
management of the operating system. Not only structures,
some variables are also defined globally and accessible through
the system space. The kernel is distributed as an executable
named ntoskrnl.exe and located inside the Windows
operating system directory. Often times, researchers address
the kernel by its internal name ntkrnlmp.

Below we list a few common Windows kernel structures
that are commonly used for memory analysis.

1) EPROCESS: On Windows, the data related to a running
process is saved inside a structure called _EPROCESS [40].
This structure provides various information for the memory
forensics process, such as process id, parent process id, a
pointer to the list of threads belonging to the current process,
etc.

We can also inspect the virtual memory space of each
process using the data from _EPROCESS. One popular
method used by various forensics tools is traversing the
Virtual Address Descriptor (VAD) tree (VadRoot field in
_EPROCESS) to enumerate all memory allocation requests
that the process has made and from there list all the memory
regions in the process.
_EPROCESS objects are stored inside the system address

space and arranged into several doubly linked lists, which
can be traversed by a kernel-mode driver to enumerate all
processes running on the system. The PsActiveProcessHead
and KiProcessListHead global variables store the addresses of
these linked lists, allowing for easy access to the information.

2) ETHREAD: _ETHREAD [41] is an internal structure
of the Windows kernel to represent a thread. Researchers
can use this structure to find many information about the
corresponding thread, such as the create time and exit time
of the thread, the process that created the thread, etc.



Fig. 1. Address Translation (taken from AMD64 Architecture Programmer’s Manual Volume 2.)

All the _ETHREAD structures belonging to the same process
are organized as a link list. We can traverse this link list using
the field ThreadListEntry.

3) Virtual Address Descriptor: : Virtual Address Descriptor
(VAD) is a structure in the Windows operating system
used to manage memory allocations in user-mode processes.
Internally, this structure is named MMVAD [43]. Each process
has its own set of VADs, which is organized as an AVL tree.
As mentioned in section II-D1, the address of the root node of
the VAD tree is stored in the VadRoot field of the _EPROCESS
structure.

The VAD tree contains various valuable information for
memory forensics. For example, the Protection flag in the
VadFlags field, which describes the actions that a process can
perform on the specified memory region, is widely used to
detect multiple common hiding techniques in malware.

E. Kernel debug symbols

Although the Windows source code is not accessible to the
public, Windows provides debug symbols for research use.
These symbols as distributed under a special file format, called
program database (or PDB). There is some information on how
to extract data from PDB files but they are very limited [24],
[33], [35].

A PDB file contains information such as the location
of global variables, functions, and the layout of internal
structures. Each PDB file is unique to one specific version
of an executable. Most if not all PDB files for Windows
components can be downloaded from Microsoft Symbol
Server at https://msdl.microsoft.com/download/symbols.

When a binary is compiled with its PDB file, usually
through using the MSVC (Microsoft Visual C++) compiler,
the binary includes a 24-byte header that serves as an identifier
for the corresponding PDB file. This header comprises of:

• A 4-byte magic value, typically set to ”RSDS.”
• A 16-byte Globally Unique Identifier (GUID), which

uniquely identifies the PDB file in the database.
• A 4-byte version number, commonly referred to as ”age”.
The GUID is the unique identifier used to locate the PDB

file associated with a specific binary. For example, when
attempting to download the PDB for a particular Windows
kernel module, such as ntoskrnl.exe, you would request
the PDB file for its kernel name, ntkrnlmp.pdb, along with
the GUID and age values found within the binary.

III. MALWARE TECHNIQUES

In this section, we introduce common malware technique
that are used to evade detection. These could be techniques
that work on user-space or kernel-space. Usually, these are
not easy to discover unless the EDR system is capable of
monitoring all system calls.

A. Direct Kernel Object Manipulation

Direct Kernel Object Manipulation (DKOM) refers to a set
of malware techniques that involve the direct modification
of kernel objects within the Windows operating system [10],
[25], [30]. One of the most common DKOM techniques is
the modification of the process list, which aims to remove a
specific process from the list. This manipulation allows the
malware to hide itself, as it won’t be visible through standard
API calls used for listing processes.

https://msdl.microsoft.com/download/symbols


Other DKOM techniques involve altering control bits within
certain Windows kernel global variables. By changing these
bits from false to true or vice versa, the malware can
potentially enable or disable specific Windows features.

It’s worth noting that DKOM has become less common
in recent times. Several factors contribute to this decline,
including the increased difficulty of making such modifications
due to advancements in Windows security mechanisms and the
extensive efforts required to find suitable locations for these
modifications. However, DKOM techniques remain relevant in
certain highly sophisticated and elevated attacks carried out by
advanced malware groups.

B. Syscalls Hooking
Operating systems manage various operations through a

series of system calls, often referred to as syscalls. These
syscalls are the interfaces that applications use to request
services from the operating system. In Windows, these syscalls
are typically implemented as Windows APIs and are managed
within the Windows kernel.

Syscalls hooking is a technique where hooks are installed
on these syscall functions for various purposes. Malware
often uses syscall hooks to prevent itself from being detected
or removed, while anti-virus software uses them to monitor
system API invocations and filter out potentially malicious
behavior.

In Windows, syscalls are managed through a table called
the System Service Dispatch Table (SSDT). A driver had the
ability to access this table and modify its entries to redirect
basic operations to customized functions, typically for hooking
purposes. However, with the introduction of Kernel Patch
Protection, also known as PatchGuard, direct modifications to
the SSDT are no longer possible. PatchGuard is a security
feature that aims to prevent unauthorized modifications to the
kernel and maintain the integrity of the operating system. This
makes it more challenging for both legitimate software and
malware to tamper with system functions and APIs.

The complexity of the Windows Operating System suggests
that there may be other advanced methods for syscall hooking
that go beyond the straightforward modification of the SSDT.
These advanced techniques often require a deep understanding
of multiple components of the Windows operating system.
While we won’t delve into the specifics of these techniques
in this discussion, it’s important for readers to be aware that
such advanced methods for syscall hooking remain relevant
and are actively explored (and exploited) in modern Windows
systems.

C. Code injection
Code injection is a popular evasion technique used in

malware. In this technique, the malware will try to write a
piece of malicious code in the virtual address space of a
legitimate process on the system, then force this process to
execute said code. Nowadays, malware authors are developing
more and more methods to perform code injection. In this
section, we will explore some code injection techniques that
are used by malware.

1) Remote code injection: This is the simplest code
injection technique. The goal of this technique is to inject
a piece of machine code, which is called ”shellcode”, into a
specified process. This technique is carried out in 3 steps:

• The malware creates a new memory region
inside another process’s address space with
PAGE EXECUTE READWRITE permission.

• The malware inserts its shellcode into the newly created
memory region.

• The malware forces the process to execute the injected
code (for example, using the CreateRemoteThread
function).

2) DLL injection and Reflective DLL injection: In this
technique, malware store the malicious code in a DLL file
and then force a legitimate process on the system to load
this harmful DLL into its address space. There are many
methods that malware can use to achieve that. For example,
they can use the Remote code injection technique to force
the process to load a DLL file from secondary memory via
the LoadLibrary function. Malware can also perform this
technique by leveraging some functions provided by Windows
such as SetWindowsHookEx.

One of the most effective and popular techniques for code
injection using DLLs is Reflective DLL injection. The main
difference between Reflective DLL injection and other classic
DLL injection techniques is that instead of using available
functions from the Windows API to load a DLL stored on
disk, this new technique implements its own loader to be able
to load the DLL directly from RAM. This approach offers
notable advantages as it reduces reliance on the Windows
API, eliminates the need to store malicious code as a file, and
therefore enhances the ability of malware to evade detection
by anti-virus and forensics tools.

3) Process Hollowing: The idea of the Process Hollowing
technique involves initializing a new process, then removing
all of its executable code and replacing it with malicious code.
After the process is modified, the resulting process appears to
be a legitimate process from the outside, but in reality, most
of its executable code is malicious.

The Process Hollowing technique is usually implemented
following four main steps:

• Initialize a new process in the suspended state.
• Unmap the memory region containing the executable

code of the legitimate process. Malware often
uses functions such as NtUnmapViewOfSection or
ZwUnmapViewOfSection to achieve this.

• Create a memory region with
PAGE EXECUTE READWRITE permission in the
suspended process to write the malware’s executable
code.

• Change the instruction pointer address of the current
process to the address of the memory region where the
malicious code is stored, then resume the process using
the ResumeThread function.



IV. VOLATILE MEMORY FORENSICS AND TECHNIQUES

In this section, we present the concept of Volatile Memory
Forensics and outline some common techniques associated
with it. We also introduce the contemporary notion of Live
Forensics. The combination of Live Forensics with Memory
Forensics is an actively discussed topic which is also relevant
to our research.

A. Volatile Memory Forensics

Volatile Memory Forensics refers to the practice of
capturing and examining the physical memory of a computing
system in response to an incident. Extensive research has been
conducted to extract critical information from this memory.
Techniques for capturing physical memory were initially
developed to maximize data preservation. Subsequently,
researchers have analyze the raw binary data from these
memory extractions by leveraging the way the Windows
kernel manages physical memory. These techniques primarily
focus on identifying traces of processes, threads, files, and
internet connections. Moreover, given the tactics employed by
malware, specialized techniques have been devised to detect
signs of specific malware behaviors.

Currently, the state-of-the-art tool for conducting Volatile
Memory Forensics is Volatility3 [20], developed by the
Volatility Foundation. Prior to that, Volatility [19], which
originated as a modest project by Aaron Walters that combined
research in Memory Forensics into a single, versatile tool,
was widely utilized. Rekall [23], a fork of Volatility initiated
by Google’s Mike Cohen, gained some attention but was
eventually discontinued.

B. Live Forensics

Live forensics is a specialized field of forensics that
revolves around analyzing a computer system while it is
actively running, or in a ”live” state. This analysis is typically
carried out by utilizing Windows APIs to interact with the
system. Through extensive use of these APIs, analysts can
obtain a substantial amount of information about the system.
This information encompasses various aspects, including but
not limited to processes, threads, files, registry entries, and
network packets. The data obtained during this analysis can
be collected from both user-space and kernel-space, with
kernel-space potentially offering a more comprehensive set of
information.

Over the years, numerous tools for Live Forensics have
been developed and widely adopted by researchers for incident
response. Table II provides a summary of some of these tools
and their associated information collection capabilities.

Live Forensics has expanded beyond the exclusive use of
Windows APIs. With the maturation of Memory Forensics
techniques, these methods have found their way into the realm
of Live Forensics. The incorporation of Memory Forensics
techniques has demonstrated the capability to yield more
comprehensive details compared to traditional use of Windows
APIs. This methodology typically involves an initial step of
extracting physical memory. Subsequently, Memory Forensics

Name Inspection
Wireshark [21] Network
Autoruns [44] Start-up items
Process Explorer [45] Processes and Threads
PE-sieve [16] Injected code
Process Monitor [46] System’s Activities
Process Hacker [32] System’s Activities
System Informer [52] System’s Activities

TABLE II
COMMON LIVE FORENSICS TOOLS FOR INCIDENT RESPONSE

techniques are applied to this memory extraction, unveiling
information through thorough indexing and searching.

These motivating factors have spurred the development
of several tools that integrate both Live Forensics and
Memory Forensics. Tools such as [17], [22], [23], [49] serve
as examples, where they conduct memory extractions and
subsequently perform analysis on the extracted files.

For the sake of brevity, we will refer to Live Forensics using
Memory Forensics techniques as Live Memory Forensics.

C. Malware Detection using Memory Forensics

Memory Forensics is a crucial process conducted when a
security incident occurs to gain insight into what occurred.
Often, a sample of the malware responsible for the incident
resides within the memory extraction, enabling further
analysis. However, pinpointing the location of these samples
can be a challenging task, as many malware techniques are
employed to conceal their presence. Fortunately, advancements
in Memory Forensics have simplified the process of locating
such samples, especially after an incident has taken place.

While these powerful tools have proven effective for
post-incident analysis, they are not commonly used for
real-time malware detection due to the high overhead
associated with Live Memory Forensics, as well as the lack
of full automation. However, in theory, by applying Memory
Forensics to identify irregularities, we should be capable
of detecting malware, provided their techniques are evident
through Memory Forensics methods. Works like [26], [28]
have demonstrated that this technical aspect is worth exploring
further in the future.

D. Locating the kernel base address

An essential aspect of Memory Forensics is the
identification of the kernel base address. The ability to locate
this address is crucial for analysts to navigate and inspect
the system. Historically, it was relatively straightforward to
find critical variables by conducting a brute-force search,
especially for structures of KDBG or KPCR. KDBG, for
instance, contains pointers to the kernel process list and
loaded libraries list, while KPCR holds the CR3 register
value used for address translation. These lists are kernel
global variables, and their addresses are typically offset
from the kernel base address. However, in modern Windows
versions, locating these variables has become increasingly
challenging or even impossible.



In Volatility3, the developers utilize a unique and
undocumented technique referred to as the ”pdb signature
scanner” 1 to discover potential kernel base addresses and
employ heuristics to effectively filter out false values. In
essence, this method involves a brute-force search of the entire
memory for the PDB header of the kernel executable.

Volatility provides a comprehensive compilation of
important structure definitions and offsets of global
variables. The Rekall project, which has been discontinued,
as well as Volatility3, a rewrite of Volatility, obtain these
offsets and structure definitions directly from PDB files.

E. Pool Tag Scanning

While using the kernel base as a reference point for
effectively navigating the kernel systems is a common method
for analyzing a physical memory file, it may sometimes
prove insufficient. This inadequacy arises from the fact
that certain values are not explicitly referenced or are
freed-but-not-overwritten. To address this limitation, [47]
introduced the concept of Pool Tag Scanning, a technique that
can discover (potentially) all objects within the kernel pool.

As detailed in Section II-C, all objects allocated
by the kernel are stored within the kernel pools.
These objects are often allocated using the function
ExAllocatePoolWithTag and are conveniently tagged
with a 4-byte value. By searching for these specific 4-byte
tags and implementing heuristics to eliminate false positives,
there is a high likelihood of discovering all objects within the
kernel pool. This approach is valuable for revealing critical
information during memory forensics.

Nevertheless, performing a brute-force search throughout
the entire physical memory image can be highly inefficient,
particularly with modern computers typically equipped with
a minimum of 8GB of RAM, and often having 16GB or
more. Fortunately, Windows reserves a dedicated and more
confined region for the kernel pool. It has been proven that
searching for objects within this reserved region is significantly
faster while maintaining a high level of precision. This entire
process, including the details of how to search within this
kernel pool region, is comprehensively documented in [48]
and the technique is also named Pool Tag Quick Scanning.

In essence, the virtual addresses that mark the beginning
and end of the kernel pool are indicated within kernel global
variables. Starting from Windows 10, these values have been
relocated to a global variable named ”MiState” of struct
_MI_SYSTEM_INFORMATION [42]. Listing II illustrates
how each version of Windows stores the pool range.

F. Detecting code injection

1) Detection based on VAD: In most code injection
techniques, the malware needs to initialize a memory region
with all 3 permissions: read, write, and execute, in order to
be able to write and execute the injected code. A normal

1https://github.com/volatilityfoundation/volatility3/blob/v2.5.0/volatility3/
framework/symbols/windows/pdbutil.py#L319

// on Windows 11
struct _MI_SYSTEM_INFORMATION* MiState;
struct _MI_SYSTEM_NODE_NONPAGED_POOL* Pool

= MiState->Hardware.SystemNodeNonPagedPool;
PVOID* PoolStart = Pool->NonPagedPoolFirstVa;
PVOID* PoolEnd = Pool->NonPagedPoolLastVa;

// on Windows 10
struct _MI_SYSTEM_INFORMATION* MiState;
struct _MI_SYSTEM_NODE_NONPAGED_POOL* Pool

= MiState->Hardware.SystemNodeInformation;
PVOID* PoolStart = Pool->NonPagedPoolFirstVa;
PVOID* PoolEnd = Pool->NonPagedPoolLastVa;

Listing II: Windows 10 and 11 kernel pool range

process in the system rarely allocates a memory region with
all 3 access permissions. Therefore, a common method used to
detect injected memory regions is to search for any VAD with
the Protection flag set to PAGE_EXECUTE_READWRITE.

The VAD-based code injection detection approach is widely
used by detection tools. In fact, many state-of-the-art tool
nowadays works by scanning the VAD tree to look for memory
regions with both write and execute permission. For example,
the plugin malfind [18] is a prime example of this approach,
as it walks the VAD tree and notifies the analyst if it finds a
VAD that has the PAGE_EXECUTE_WRITECOPY protection
flag. This plugin is available for both Volatility and Rekall and
has become a standard plugin that gets installed with Volatility
by default.

Another approach to using VAD for detecting code injection
is combining it with the Process Environment Block (PEB).
In 2016, Monnappa created the plugin HollowFind [38] for
Volatility. In addition to checking the protection flag in a VAD
node, HollowFind compares the information inside PEB and
VAD to detect whether malware has unmapped the process’s
original code. Another technique utilized by this plugin is
examining parent-child relationships of running processes in
the system. It identifies system processes that are started
by the wrong parent process and uses it as a signature to
detect malware. By combining all these methods, HollowFind
can accurately pinpoint processes that have been affected by
Process Hollowing with a very high degree of accuracy.

In 2016, Monnappa presented another plugin for Volatility,
named Psinfo [39], in an attempt to combine all detection
techniques from malfind and HollowFind. The goal of this
plugin is to allow a security analyst to get process-related
information and spot any process anomaly without having to
run multiple plugins.

In 2017, Aleksandra Doniec introduced PE-sieve [16], an
open-source tool with the ability to detect multiple types
of code injection attacks. The tool is designed to analyze
a running process and identify potential shellcode injection,
Process Hollowing, and other types of malicious activity. It is
used as a base engine for many other malware-detecting tools
like HollowsHunter [14], mal unpack [15], etc.. PE-sieve
utilizes many different techniques, such as:

• Compare the image loaded to memory with the original

https://github.com/volatilityfoundation/volatility3/blob/v2.5.0/volatility3/framework/symbols/windows/pdbutil.py##L319
https://github.com/volatilityfoundation/volatility3/blob/v2.5.0/volatility3/framework/symbols/windows/pdbutil.py##L319


program stored on disk.
• Use VAD to detect PAGE_EXECUTE_WRITECOPY

regions.
• Use VAD and PEB to detect Process Hollowing.
• Detect PE image loaded in private memory.
One of the standout features of PE-sieve is its capability to

work on a live machine. Most of the other detection tools at the
time is either a plugin for Volatility or Rekall. Therefore, they
are only used to analyze memory dumps. It means that to use
these plugins, users have to first extract the RAM from their
memory. The ability to perform live forensics makes PE-sieve
much more accessible and easier to use.

G. Detection tools based on PTE and PFN database

Detection methods using VAD have certain limitations.
VAD only contains the initial protection flag of a memory
region, so malware can allocate the malicious buffer in a
particular manner to avoid detection from forensics tools.
Due to these drawbacks, researchers started to seek alternative
techniques that do not heavily depend on VAD.

In 2019, Block et al. [9] proposed to use PTE and
PFN database for code injection detection and developed
the PteMalfind [8] plugin. As of 2023, this plugin
supports Rekall, Volatility, and Volatility 3. The tool
works by traversing the paging structures of a process to
extract information from all the PTEs, then combining this
information with the PFN database to detect any injected code.
The tool can detect various code injection techniques such as
Process Hollowing, Remote code injection, Atom bombing,
etc.

V. LIVE MEMORY FORENSICS WITHOUT EXTRACTION

Current Live Forensics based on Volatile Memory Forensics
relies heavily on the extraction of physical memory. This
introduces an additional step of extracting and determining
the kernel base address, which can be inefficient due to
brute-force searches. In this section, we introduce our novel
approach to Live Forensics based on Volatile Memory
Forensics, which operates exclusively within the system’s
memory and doesn’t necessitate the extraction of RAM.
Our method demonstrates the ability to perform various
Memory Forensics techniques with minimal adjustments to
the traditional file-based approach.

A. Overview

In our approach, we utilize a combination of a kernel driver
and a user-space program. The kernel driver provides access
to the kernel-space and is managed by the user-space program
through a series of IOCTL2 calls or similar communication
methods.

Additionally, we leverage the PDB file of the kernel to
obtain offsets for all global variables and structure definitions.
The user-space program retrieves the PDB file associated with
the running system.

2https://learn.microsoft.com/en-us/windows/win32/devio/
device-input-and-output-control-ioctl-

Through the established communication channel between
the kernel driver and the user-space program, we can construct
intricate logic, as elaborated in the subsequent sections,
allowing us to conduct live forensics directly in memory
without the need for RAM extraction.

B. Accessing the kernel-space

Accessing the kernel-space is accomplished through the
kernel driver, and there are various methods for loading
this driver. It can be configured to load automatically
during system boot or loaded on-demand when necessary.
In either case, Windows requires that the kernel driver
be defined within the registry at the following location:
HKLM\SYSTEM\CurrentControlSet\Services.

If the driver is loaded on-demand, a user program with the
SeLoadDriverPrivilege privilege is required to issue
the NtLoadDriver command for loading the kernel driver.

C. Acquiring the kernel base address

In our approach, determining the kernel base address is
a relatively straightforward task. When the kernel driver is
initiated (DriverEntry), it queries the current process by
calling IoGetCurrentProcess. Due to the way Windows
manages drivers, this process corresponds to the _EPROCESS
structure for the system process. Following this, it traverses
the process list backward to the head, which is typically
only 1 to 2 steps away, as the system process is usually
the first item in the list. Conveniently, the head of the
process list corresponds to the address of the kernel’s global
variable, PsActiveProcessHead. By using the offset
of PsActiveProcessHead, we can readily calculate the
kernel base address.

The structure of _EPROCESS and the offset of
PsActiveProcessHead are obtained from the PDB.
In recent Windows versions, the list pointers (previous and
next) within _EPROCESS remain consistent. We hard-code
these values into the kernel-space, enabling us to calculate
PsActiveProcessHead. Subsequently, we return this
address to the user-space, where the kernel base address can
be determined from the offset extracted from the PDB.

Alternatively, in an advanced approach, the user-space can
provide the kernel with all the requisite values for calculating
the kernel base address.

Listing III provides an example of how to obtain the kernel
base address. We’ve tested this sample on Windows 7, 10,
and 11, consistently achieving the correct result. Nevertheless,
for added certainty, a full traversal until the head (where the
process name is empty) is found is recommended.

It’s worth noting that there may be alternative methods for
finding the kernel base address, as suggested in [] (reference
needed). While all of these proposed methods, including our
own, may not be proven correct, through rigorous testing
and validation, they have demonstrated their reliability and
accuracy.

https://learn.microsoft.com/en-us/windows/win32/devio/device-input-and-output-control-ioctl-
https://learn.microsoft.com/en-us/windows/win32/devio/device-input-and-output-control-ioctl-


PVOID systemEprocess;

NTSTATUS
DriverEntry(

_In_ PDRIVER_OBJECT DriverObject,
_In_ PUNICODE_STRING /* RegistryPath */

) {
systemEprocess = IoGetCurrentProcess();

}

void calculate_kernel_base() {
// eprocessLinkOffset + listBLinkOffset
ULONG64 backPointer; /* from PDB */
ULONG64 processHeadOffset; /* from PDB */

PVOID processHead =
(PVOID)(*(ULONG64*)((ULONG64)
systemEprocess + backPointer));

PVOID ntosbase =
(PVOID)((ULONG64)
processHead - processHeadOffset);

}

Listing III: Acquiring the kernel base address

D. Perform Pool Tag Scanning

Pool Tag Scanning can be executed in its variations, Pool
Tag Quick Scanning, albeit with substantial modifications to
ensure stability. Given that we are now working directly with
kernel virtual memory, any illegal memory access can lead to
a kernel crash. This is due to the possibility of encountering
virtual ranges that is unmapped (lacking a physical backup
page), as explained in [48], “sparse allocation of virtual
address space, enabling the kernel to reserve a large range
of addressees for a pool, but to only allocate physical pages
when needed”.

Following the steps of Pool Tag Quick Scanning, we can
easily locate the non-paged pool range using the kernel base
address and offsets from the PDB. Recall that these values are
available in MiState for Windows 10 and later.

During the scanning process, we incorporate checks at the
beginning of each page to verify its accessibility. If a potential
object is discovered, and its size exceeds the boundaries of the
page, it is rejected. To determine the accessibility of a page,
we utilize the function MmIsAddressValid.

Subsequently, the kernel driver transmits the addresses of
potential objects back to the user-space program. For each
object, if the structure is well-documented, the user-space
program can request the kernel to conduct successive memory
reads to fully extract the object. It is highly probable that
there will be no invalid memory access issues since all the
objects discovered are in the non-paged pool, which remains
in physical memory and is not subject to paging out.

E. Code injection detection method

Among the techniques for detecting code injection discussed
above, we decide that using PTE and PFN database is
the most effective method. This technique solves the issues
of previous VAD-based tools. Moreover, the information
about a page’s protection flag could also be extracted

Detection method
Tool name VAD VAD and

PEB
PTE and

PFN database

Able to work on a
running machine?

Malfind x
HollowFind x

PE-seive x x
PteMalfind x
Our method x x

TABLE III
OUR APPROACH COMPARED TO OTHER DETECTION TOOLS

from the PTE. Therefore, we can use PTE to scan for
PAGE_EXECUTE_READWRITE pages instead of VAD.

Another reason to choose the PTE and PFN database
approach is that despite being an excellent technique, it is
still relatively new and has not yet been widely adopted by
many of the latest detection tools. As shown in Table III,
most well-known tools still use VAD to identify code injection.
Moreover, there currently aren’t any live forensics tools that
incorporate this method, primarily because it is difficult to
access and extract data from the PTE and PFN database. These
structures serve as an interface between Windows and the
CPU, and obtaining information from such low-level structures
on a running system is very challenging.

With the goal of detecting code injection using PTE and
PFN database, our tool needs to perform the following tasks:

1) Find every _EPROCESS structures inside the memory.
Each _EPROCESS structure represents a running
process on the computer.

2) From each _EPROCESS structure, extract the address
of every paging structure of the process.

3) Traverse the paging structures to locate the PTE(s).
4) Parse and extract the needed information from the PTE.
5) Traverse the PFN database to extract the needed

information.
6) Combine the data from PTE and the PFN database to

detect the memory regions where malware has injected
their code.

NTSTATUS openPhysicalMem() {
NTSTATUS ntStatus = STATUS_SUCCESS;
RtlInitUnicodeString(

&ObjectNameUs,
L"\\Device\\PhysicalMemory");

InitializeObjectAttributes(
&ObjectAttributes,
&ObjectNameUs,
OBJ_CASE_INSENSITIVE,
(HANDLE)NULL,
(PSECURITY_DESCRIPTOR)NULL);

ntStatus = ZwOpenSection(
&physicalMemHandle,
SECTION_ALL_ACCESS,
&ObjectAttributes);

}

Listing IV: Accessing physical memory



F. Setup physical memory access

Since the addresses used in the paging structures are
physical addresses, we need a component with the ability
to read data from memory using physical addresses. This
component will support the process of traversing paging
structures such as PML4E, PTE, etc.

There are several methods to read data from memory using
physical addresses. For example:

1) Using the MmCopyMemory function with
MM_COPY_MEMORY_PHYSICAL flag

2) Using the MmGetVirtualForPhysical function to
convert a physical address to a virtual address.

3) Mapping a section of the physical address to the kernel
virtual address space using ZwMapViewOfSection.

4) Mapping a section of the physical address to the kernel
virtual address space using MmMapIoSpace.

As a foundational approach, we recommend following
option 3. Specifically, we propose mapping the desired
physical page into the virtual address space using the
ZwMapViewOfSection. Once this is done, we can read the
data on that page using standard Windows APIs for memory
access.

G. Detecting injected pages

We have implemented two scanning modes to detect
injected pages: RWX scan and Private executable page scan.
In RWX scanning mode, we search for pages in memory
that have both write and execute privileges, similar to other
VAD-based detecting techniques. As mentioned in section
IV-F1, a page with both write and executable protection is
rarely seen in a normal process in Windows. On the other hand,
RWX pages are always needed in malware code injection
techniques. Therefore, this is a very good signature to help us
determine code injection malware. The second mode, Private
executable page scan, is based on the idea that injected pages
are always in private memory. Normally, private pages are
used to store process data and aren’t executable. Therefore, a
private page with executable privilege is suspicious and has a
high chance of containing malicious code.

VI. IMPLEMENTATION

To support our methodology, we’ve developed a tool called
LPUS [5], [6]. This tool is capable of executing Pool Tag
Quick Scanning, inspecting multiple kernel global variables,
and performing several code injection detection methods.

LPUS consists of a kernel driver written in C [6] and
a user-space program written in Rust [5]. Communication
between these components is facilitated through file-based
IOCTL.

The entire tool is encapsulated within a single binary file.
Upon startup, it extracts the kernel driver stored within to
a designated location and configures the registry settings
for driver loading. Simultaneously, the user-space program
determines the kernel version to download the appropriate
PDB file and initiates the parsing process upon completion
of the download.

After everything is set up, the tool can perform Live
Memory Forensics without extraction of RAM.

LPUS was successfully executed on Windows 10H2. By
simulating multiple code injection methods and achieving
successful detection, we have validated that our proposed
method is functioning as intended.

A. Limitations

Our approach comes with certain limitations and drawbacks
that users should consider. Here, we highlight some significant
drawbacks that may be encountered, and it’s advisable to fall
back to alternative methods when possible.

1) Internet Dependency: Our method relies on the
availability of internet access for PDB file downloads
during the analysis. This requirement can be problematic
in environments where internet access is unavailable or
intentionally isolated, such as during an ongoing incident
response in a secure or isolated network setting. In such cases,
it may not be feasible to rely on this method.

It’s worth noting that major Windows versions may not
always introduce substantial changes due to delta updates and
express updates [7]. This observation may indeed provide an
opportunity to store multiple PDB files of different major
Windows versions. However, it’s important to keep in mind
that the extent of changes between major versions can still
vary, and not all updates will have uniform impacts. Due to
limited research on this assertion [11], [13], the effectiveness
or potency of this claim remains uncertain.

2) Unsafe memory access: Our approach allows for
extensive access to the kernel-space memory, as well as the
ability to read and write in memory. However, it’s important
to emphasize that memory access is not safeguarded, and
any erroneous or unauthorized memory operations have the
potential to trigger errors, leading to system instability or even
a kernel panic (exception) that forces a complete machine
shutdown.

3) Insecure kernel access: Our method employs a
communication mechanism between user and kernel through
file-based IOCTL, which is accessible by any process. This
presents a security vulnerability as a malicious process could
potentially send IOCTL commands and read system data
freely. To mitigate this risk, an authorization mechanism
should be implemented to prevent unauthorized access and
enhance security.

4) Deployment security: Deploying the solution
necessitates that the kernel driver be signed using a
Microsoft certificate. However, because of the extensive
capabilities of this kernel driver, there is the potential for
it to be exploited for malicious purposes. To prevent this
undesirable outcome, the to-be-deployed kernel driver should
undergo rigorous security measures to ensure its integrity
and prevent misuse. Security hardening and stringent access
controls are crucial to safeguard the system from potential
threats.

5) Efficiency of Live Forensics: There are various concerns
[1], [2], [4], [50] about the efficiency of Live Forensics,



but it’s important to note that some of these research may
be outdated, as physical memory has undergone significant
upgrades over time. Furthermore, Live Forensics had not
been previously integrated with Memory Forensics or worked
directly on memory as our proposed method does. As a result,
claiming that our method’s efficiency is higher or lower than
current state-of-the-art forensic practices is unconfirmed, and
this should be the subject of thorough and up-to-date research.

B. Extensions

Our method has opened up a new paradigm in Live
Forensics, enabling Memory Forensics to be conducted
directly in memory. The fundamental concept involves precise
manipulation of the kernel using PDB files as guiding
directives. Building on this foundation, we envision the
potential for further extension into a more sophisticated and
versatile piece of application. In this section, we present a list
of applications that could benefit from enhancements made
possible through our method.

1) Memory Extraction: Most memory extraction tools use
a kernel driver and complete the extraction without any
metadata. We can build on this limitation by providing the
kernel base address, the CR3 register, and the kernel version.
These information can be easily collected if following our
method.

Kernel base address can be fetched as soon as the kernel
driver starts, the kernel version can be fetched from the kernel
executable when performing extraction. Only the CR3 register
is hard to collect since these require access to global variables,
while this requires the PDB files. If PDB files are available,
then destructing the global variables. Otherwise this register
value can be inspected later.

By providing this metadata, we enhance the
comprehensiveness and value of memory extractions,
making them more informative and useful for forensic
analysis and security research.

2) Scripting Engine: The ability to attach to the kernel and
inspect global variables, along with their internal structure
values, is a valuable asset for security researchers and
kernel driver developers. A similar program is WinDBG
[37], developed by Microsoft, which also provides these
capabilities. However, WinDBG typically requires users to
access the target machine remotely from another machine
for such inspections. In contrast, our method allows users
to directly perform global variable inspections on the current
machine.

To facilitate these capabilities, a scripting engine similar to
the one found in WinDBG can be employed, enabling users
to execute arbitrary commands and conduct in-depth kernel
analysis. It’s important to note that our method, while powerful
for memory analysis and global variable inspections, does have
limitations and cannot support full debugging functionality,
including features like breakpoints and direct modifications
of registers. Nonetheless, it provides valuable capabilities for
research, analysis, and development tasks.

3) Anti-Cheat Engine: An Anti-Cheat Engine is a suite
of software and techniques designed to detect and prevent
cheating in games. Game cheaters often employ two primary
techniques: static patching and dynamic patching. Static
patching involves making significant modifications to the
binary control flow to render certain checks irrelevant, while
dynamic patching involves using methods akin to those used
in malware to modify the process memory or inject code that
alters the control flow or hooks into the game logic. Dynamic
patching is more common as it typically requires less time
investment.

One common method used in dynamic patching is game
hooking, which is an alternate term in the game cracking
community for process injection. As process injection can be
identified through Memory Forensics, our method is certainly
capable of discovering these game cheats in real-time, making
it a valuable tool for detecting and mitigating cheating in
(online) games.

4) Security Systems: The use of our method presents an
opportunity to enhance various security systems, including
Anti-Virus and Endpoint Detection and Response solutions.
Integrating Live Memory Forensics into these systems is a
reasonable approach in enhancing their capabilities, as it can
provide real-time insights into system behavior and threats.
However, one of the historical challenges in adopting Live
Memory Forensics has been the overhead associated with
RAM extraction, making it less common in these systems.

Our method, which eliminates the need for cumbersome
memory extraction, can make it significantly easier to integrate
Live Forensics into these security systems. This integration
can lead to more effective and proactive threat detection,
providing security solutions with a valuable tool to respond
to sophisticated and evolving threats in real-time.

VII. CONCLUSION

This paper introduces a novel methodology for Live
Forensics using Volatile Memory Forensics, often referred
to as Live Memory Forensics. In contrast to the current
state of Live Memory Forensics, which typically requires
the extraction of physical memory and extensive brute-force
searching to initiate the analysis, our method enables analysis
to be conducted directly in memory without the need for RAM
extraction.

The proposed method has been implemented in a prototype
tool capable of performing two common tasks in Memory
Forensics: Pool Tag Scanning and the detection of process
injection. While this method holds great promise, there are
possibilities for further enhancement. Due to time constraints,
we can only briefly discuss these potential enhancements
without presenting concrete evidence at this stage.
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