
How to modify Mach-O binary for Obfuscation and Hooking

Anh Khoa Nguyen
khoana@verichains.io

Verichains

Thien Nhan Nguyen
Verichains

Abstract
To be written

1 Introduction

To be written
The remainder of this paper is structured as follows. Section
2 offers an in-depth exploration of the background, encom-
passing obfuscation techniques, binary analysis, an overview
of Apple’s loader, and, more specifically, the Mach-O binary
format. In Section 4, we provide a detailed account of the
implementation process to obfuscate Mach-O binaries. These
steps include binary modifications and restoration of essen-
tial information during runtime. We also address the nuances
of obfuscating Objective-C compiled binaries and introduce
additional information that can be leveraged to enhance ob-
fuscation, along with any associated drawbacks. Finally, in
Section ??, we offer our concluding remarks.

2 Background

2.1 Binary Obfuscation
Binary executable files encapsulate assembly instructions, pro-
gram data, and essential execution information for the operat-
ing system to execute. Binary obfuscation aims to eliminate
critical information that reverse engineers rely on for their
analysis. Nevertheless, it is essential to note that binary obfus-
cation is inherently platform-specific. The predominant focus
has been on Windows binaries (commercialized) [8, 12, 16]
and Linux binaries [6, 9, 10, 14, 17], while Apple binaries
have received comparatively limited attention. Some previous
work [4, 13, 17] has proposed modest adjustments to debug-
ging information within binaries, which helps to impede the
analysis capabilities of reverse engineering platforms.
Another widely recognized form of binary obfuscation is
known as “packing" [11]. This method involves compress-
ing or encrypting the binary code and then unpacking it at

runtime. However, it is important to note that because the
code is unpacked during runtime, it remains susceptible to
memory extraction, which could potentially allow an attacker
to recover the original code.

2.2 Apple’s loader dyld
The Apple loader [1], known as dyld, is responsible for the
execution of programs, including the loading of the binary
and its associated libraries, the resolution of dynamic symbols,
the rebasing of offsets, and the final execution of the binary.
Due to the shared cache mechanism [7] introduced in iOS
13.5 or macOS 11.0, important libraries, including the system
(often referred to as libSystem [2]), C++, Objective-C Run-
time [3], Foundation, and Swift Runtime libraries, are loaded
into memory and are only available there. In older versions
of Apple’s operating systems, direct file system access to the
dyld loader was possible. However, in recent versions, such
access is no longer feasible as dyld and these libraries are
now exclusively in memory since the system boots.

2.3 Mach-O binary format
The Mach-O binary format is inherently complex. To gain a
comprehensive understanding of our proposed obfuscation
technique, it is imperative that we closely examine this binary
format. It is crucial to emphasize that our obfuscation method-
ology does not pertain to the obfuscation of the binary code
itself. Instead, our focus lies on the obfuscation of vital infor-
mation stored within the binary file. Therefore, a thorough
understanding of how the Mach-O binary format stores this
information is important in understanding our approach.

2.3.1 Basic Mach-O structure

The Mach-O binary format can be comprehensively examined
from multiple perspectives. One fundamental approach is to
dissect it on the basis of its encoding of binary data. In this
sense, a Mach-O binary comprises a header, a sequence of

1

mailto:khoana@verichains.io

load commands, and subsequent raw binary data. The header
provides essential information about the binary, encompassing
its type (whether executable or library), endianness, architec-
ture, and the number of load commands. Load commands, cru-
cial for the loader’s runtime operations, facilitate the mapping
of the binary into memory and the execution of preliminary
tasks. Some load commands reference the raw binary data.
Alternatively, another perspective to comprehend the Mach-
O binary is through its segmentation. Typically, the binary
consists of three key segments: _TEXT contains assembly
instructions; _DATA and _DATA_CONST store static binary data;
_LINK_EDIT segment is dedicated to loader instructions.

2.3.2 Dynamic library load chain

In most cases, programs cannot function as standalone entities
but rely on dynamic libraries. These libraries are registered
in the header of Mach-O binaries using commands such as
LC_DYLIB (or similar equivalents). These commands establish
a load chain, organized in a specific order, and recursively
link each item. In addition to these explicit commands, the
loader also dynamically loads libraries that are essential for
the binary’s runtime operation. These may include standard
libraries, Foundation libraries, as well as Objective-C and
Swift libraries, among others.
The loader is responsible for locating and loading libraries
into memory. These libraries fall into different categories:
system installed libraries and user-provided libraries are iden-
tified by their names within the LC_DYLIB load command.
These names can represent full or relative paths. Full paths are
self-explanatory, whereas relative paths can be more intricate,
involving file system-relative paths or the use of rpath vari-
ables. There are three rpath variables: @executable_path,
@loader_path, and @rpath. They serve as references to li-
braries, with @executable_path pointing to the location of
the executable, @loader_path indicating the loader’s loca-
tion, and @rpath being defined through a series of LC_RPATH
commands. Libraries using the @rpath reference will be iter-
atively replaced through each item in the LC_RPATH chain to
search for the corresponding file on the disk.

2.3.3 Dynamic Symbols

Functions from external libraries are often used as a means
of code reuse. When a binary does not statically link with
a library, it must specify the required library and functions
statically in its binary format and will be resolved at runtime.
This approach to code reuse is known as dynamic loading.
In Mach-O binaries, all the information necessary for dy-
namic loading, usually referred to as import table, is spread
across various segments, including _LINK_EDIT, _DATA, and
_DATA_CONST. The import table in Mach-O has undergone
several updates over time. The original version of the import
table used a custom bytecode chain, while the updated version

introduced in iOS 14 employs fix-ups chains.
During both load time and runtime, the loader of a Mach-O
binary reads the import table, searches for the addresses of
symbols, and rewrites them in memory for reference by the
executable or library code. To facilitate this functionality, the
binary allocates space for a list of stubs. These stubs serve as
templates and serve as branching targets. When these stubs
are resolved by the loader, the target functions become known,
allowing calls to dynamic library functions as shown in Table
1.

2.3.4 Rebase

In binary files, references (pointers) to other data are often
stored as file offsets. During execution, when the binary is
loaded into memory at a specific address range, these refer-
ences need to be adjusted from relative (offset in the file) to
absolute addresses. This process is called rebasing, where
pointers are rebased from 0 to the loaded address. Readers
might be familiar with Position-Independent Code, and the
rebase is the design for this mechanism in Mach-O binaries.
While there is no specific term for the list of pointers to be
rebased at runtime, for the sake of brevity, we can refer to
these as the "rebase table".

2.3.5 Bytecode chain

In the original design of Mach-O binaries, the import ta-
ble and the rebase table were implemented using bytecode
chains. These chains embody the basic form of a state
machine instruction. This bytecode has a special opcode
BIND_OPCODE_DO_BIND to determine where a state defines a
symbol, or opcodes with prefix REBASE_OPCODE_DO_REBASE
to define a rebase pointer. This approach optimizes storage
by specifying only changes between multiple items.
In this design, there are four different chains, each serving
distinct purposes: Rebase, Non-Lazy, Lazy, and Weak. The
Rebase chain is the rebase table. Non-Lazy, Lazy, and Weak
chains are used for dynamic symbol resolution, but operate at
different stages of the binary execution. Non-Lazy symbols
must be resolved during the load time, while lazy symbols
can be resolved when first called. Weak symbols are used to
avoid collision in the symbol name.
Lazy symbols are resolved through an indirect call to the
loader, which subsequently reads the bytecode chain to ex-
tract a single symbol and writes back the function address.
This process is executed via a procedure in dyld known as
dyld_stub_binder. An overview of this type of resolution
is given in Table 2.

2.3.6 Chained fixups

In later versions of the Mach-O binary format, performance
optimization led to the deprecation of bytecode chains in fa-
vor of fixups chains. Unlike bytecode chains, fixups chains

2

do not separate between rebasing and dynamic symbol res-
olution; instead, they are processed together. This approach
significantly enhances overall performance by reducing the
number of runs through the binary.
In this design, there exist sequences of contiguous 8-byte
values. Each 8-byte unit incorporates a single bit to signify
whether it is intended to serve as a rebase pointer or to repre-
sent a dynamic symbol. For rebase pointers, the unused bits
are repurposed to specify the readdressing mechanism, while
dynamic symbols utilize the remaining bits to encode both
the index within the library list and the index within the string
table corresponding to the symbol name. The 8-byte values
are modified in place when rebased or resolved during load
time.

2.3.7 Export trie

In Mach-O binaries, dynamic symbols that are meant to be
discovered during dynamic symbol resolution are stored in
an export trie. This data structure resembles a prefix trie and
derives its name from this resemblance. The essential char-
acteristic of an export trie is that all items share a common
root, which requires that all symbols be prefixed with an un-
derscore.

2.3.8 Fat binary

A fat binary is a common type of executable binary used in Ap-
ple devices. It functions as a wrapper for a multi-architecture
executable containing different architectures of Mach-O bina-
ries of the same program. When submitting applications to
Apple, a fat binary is typically required. However, when a user
downloads the application to a specific device, only the Mach-
O binary with the corresponding architecture for that device
is actually downloaded and used. This approach ensures com-
patibility with various Apple devices while optimizing the
download size for each specific target.

3 Related Works

In this section, we survey the existing open-source solutions
for Mach-O binary obfuscation, focusing specifically on meth-
ods that take a binary as input and produce an obfuscated
output. We exclude approaches that involve decompilation
followed by obfuscation on the decompiled code from our
consideration; packers are also excluded due to them being a
different kind of obfuscation. This enumeration aims to pro-
vide an overview of the current landscape of Mach-O binary
obfuscation techniques that adhere to the specified criteria.
We first go through a list of common obfuscation techniques
on Mach-O binaries; these techniques are well known and
often suggested, as well as supported, by many. These tech-
niques often involve the removal of exported symbols. The ex-
ported symbols are not mandatory in the main executable be-

cause the binary entry point is accessible through the LC_MAIN
load command and other symbols are not referenced by other
libraries. Removing the list of exported symbols (and some-
times, public symbols) can be easily performed through com-
piler / linker argument invocation or directly remove the asso-
ciated load commands, LC_SYMTAB for instance.
Unused sections and data within the binary are also targeted
for removal in certain obfuscation methods. This process is
relatively straightforward since these portions of the program
are deemed unnecessary for execution.
Numerous obfuscation methods focus on renaming Objective-
C symbols, as evident in tools like MachObfuscator [4] and
ios-class-guard [13]. The underlying rationale is straightfor-
ward: Renaming Objective-C class names and methods to
strings of equal length, often employing random or generated
names. This intentional obfuscation adds complexity for re-
verse engineers, requiring more effort to decipher the meaning
of classes without the aid of descriptive names.
The Poor Man’s Obfuscator [17] employs a more intricate
obfuscation scheme. In this approach, various load com-
mands are altered to feed incorrect information to binary
analysis platforms. Obfuscation options, called transforma-
tions, include actions such as randomizing the names of ex-
ported symbols, redirecting the addresses of exported sym-
bols to different locations, adjusting the offsets and sizes
of sections in load commands, and modifying entries in the
LC_FUNCTION_START table. Upon scrutiny, this obfuscation
scheme introduces moderate disruptions that challenge many
binary analysis platforms.

4 Implementation

In this section, we present an in-depth exploration of our ob-
fuscation technique, tailored specifically for Mach-O binaries.

4.1 Design Overview

The primary objective is to manipulate the load-time data em-
bedded within the binary. By modifying these critical pieces
of information, we render the binary incapable of successful
loading into memory. These information elements frequently
serve as crucial input for static analysis tools, such as IDA or
Ghidra. The removal of this information creates an environ-
ment of partial knowledge, making it harder for analysts to
reverse the binary. A similar obfuscation concept was intro-
duced in a previous work for Windows PE binaries [8].
We introduce a control-flow intervention between the binary
loading process and its execution. This is necessary because
the loader cannot perform a full load of the binary due to
missing information that results in a crash during execution.
To keep the binary working as normal, the intervened code
performs a part of the loader’s workflow using the extracted
information. This process is later termed restoration logic.

3

This intervening control flow is inserted through an external
library or is injected, as described in [?].
In this paper, we use an external library to perform restoration
logic. The obfuscated binary is stripped of unnecessary infor-
mation, and the information needed for the loading process is
extracted, then included in the external library. The binary is
also added with a load command to load our external library.
As an optional measure, the extracted data can undergo static
encryption, with decryption occurring at load time when our
restoration logic is executed. It is worth noting that our restora-
tion logic may rely on functions from the loader, potentially
exposing the runtime restoration process. To enhance the re-
silience of this restoration method, we offer a mechanism to
conceal the invocation of these functions by jumping to the
direct address.

4.2 Extracting information
Because our obfuscation alters the loading process, the infor-
mation used by the loader is considered for extraction. This
information is typically stored in _LINK_EDIT segment. Com-
mands that use these segments can be removed if they are not
necessary. Our obfuscation chose to extract the information
in LC_DYLD_INFO_ONLY, LC_CHAINED_FIXUPS. In addition,
we also extract the list of constructor function pointers; these
are often called before the binary’s main procedure.
LC_DYLD_INFO_ONLY load command provides informa-
tion in the form of bytecode chains. If the binary has this load
command, we eliminate the lazy and weak bytecode chains
by rewrite the data so that the loader would skip through. This
is accomplished by configuring the bytecode chain size to a
value of 0 within the load command and subsequently over-
writing the bytecode chain section within the _LINK_EDIT
segment with random values.
LC_CHAINED_FIXUPS load command offers a sequence
of fixups chains. By traversing these chains, we can extract
all the imported symbols. These symbols are typically stored
as indices pointing to an indexed store of strings, where each
index corresponds to the symbol’s name and the hosting li-
brary. To exclude these symbols from the loading process,
we undertake a two-fold process. First, we rewrite each chain
dynamic symbol values to a rebase values. Subsequently, we
completely eliminate the string table that holds the symbol
names.
In both situations, the loader should proceed without experi-
encing a crash. If the table is empty in the case of bytecode
chains, the loader can skip reading the dynamic symbols. Sim-
ilarly, in the case of chained fixups, they can be resolved as a
rebase value, ensuring a seamless continuation of the loading
process.
Constructor functions refer to pointers that are invoked by
the loader once all images have been loaded into memory.
These functions are called sequentially and recursively (into
each loaded library) as part of the initialization process. To

remove these functions, several methods are available. One
straightforward approach is to modify the LC_SECTION flag to
exclude the section from being listed as constructor pointers.
Additionally, pointers are typically checked to ensure that they
reside within the binary’s memory region. When adjusting
these pointers to point outside the memory region, the loader
will disregard them, effectively achieving removal of these
functions.

4.3 Removing redundant information
Some data are automatically generated during the compi-
lation process by the compiler and the linker. This infor-
mation serves no inherent purpose during runtime and, as
such, can be removed. Examples of such debugging-related
data are defined in commands like LC_SYMTAB, LC_DYSYMTAB,
LC_FUNCTION_STARTS, and LC_DATA_IN_CODE, among oth-
ers. Their exclusion from the binary file does not compromise
its functionality during execution, but rather streamlines the
binary by eliminating superfluous debugging-related content.
The complete removal of this information effectively prevents
a basic analysis that relies on these debug symbols to make
sense of the binary program.
Depending on the nature of the load command and its func-
tionality, it may be considered for removal. Load commands
that fall under the category of informative or debugging data
are typically candidates for removal, provided that their ab-
sence does not disrupt the overall load process or while run-
ning.
Our technique also allows for the removal of load commands
related to system libraries. These libraries are always present
in memory and can be accessed by any process. The inclusion
of these load commands in the binary is only necessary for
referencing dynamic symbols. However, since our obfuscation
method extracts all dynamic symbols from the binary, the
references to system libraries can also be eliminated.

4.4 Restoration
During runtime, the retrieval of extracted information, which
is crucial for the complete loading of the binary, occurs. We
employ a constructor function that is scheduled to run before
the main executable. By utilizing the entire set of parameters
provided by the loader, we are able to determine the base
address of the main executable that has been loaded into
memory, as depicted in Listing 2.
Having obtained the base address of the main executable,
we can proceed with the restoration process by simulating
the loader’s actions. For each piece of extracted information,
we execute the corresponding restoration procedure in accor-
dance with its specific logic.
The load commands LC_DYLD_INFO_ONLY and
LC_CHAINED_FIXUPS have different representations, but
both contain a collection of dynamic symbols. Each symbol

4

in the collection includes the symbol name, the exporting
library, and the address where the function pointer is stored.
By extracting data from these load commands, we generate
a dynamic symbol list. During runtime, we iterate through
this list to locate the symbol and update the function pointer.
The symbol can be easily found using dlsym. Writing to
the function pointer requires that the address be writable,
as described in Listing 1, because the loader locks the
__DATA_CONST segment as read-only after it finishes and our
restoration logic performs after the loading process.

#include <mach/mach.h>
vm_protect(mach_task_self(), offset, size, 0,

VM_PROT_READ | VM_PROT_WRITE);

Listing 1: Modify the virtual memory range from offset to
offset+size to Read-Write.

Constructor functions can be invoked directly. We can cal-
culate the function addresses and invoke them with parame-
ters passed to our constructor because the loader consistently
passes the same arguments to all constructors during initial-
ization, enabling us to call these functions manually without
reliance on the loader.
The aforementioned mechanism serves as the fundamental
concept for obfuscating a Mach-O binary. In the process, we
have incorporated the utilization of an external library. In
order to achieve a high level of obfuscation, we employ the
same obfuscation techniques to obscure the external library
and conceal the restoration logic. However, this approach
presents a unique challenge as the library now needs to re-
store itself without passing through the loader. Further details
regarding this issue can be found in Appendix A.

4.5 Objective-C compiled binary
The previously described restoration logic is highly effective
when applied to binaries compiled from C or C++. However,
within the Apple ecosystem, Objective-C is a predominant lan-
guage for application development. Objective-C is a unique
component of Apple’s technology stack and is seamlessly
integrated into the loading process of executables through
custom passes. Consequently, addressing the challenges asso-
ciated with Objective-C compiled binaries requires a distinct
approach. Before delving into these nuances, it is essential to
clarify the synergy between Objective-C and the dyld loader.

4.5.1 Relationship with dyld

The Objective-C runtime is consistently loaded into memory
and automatically mapped to the same virtual memory space
as the executable. Within this runtime, a collection of hooks is
made available and these hooks are strategically used by the
dyld at various stages of the binary loading and unloading

processes. During the initialization of the Objective-C runtime
via libSystem, an array of callbacks is supplied to dyld.
By the callback structure _dyld_objc_callbacks_v1, the
Objective-C runtime registers three functions at different
stages of the binary loading and unloading processes: when
the binary is mapped into memory, when the binary is invoked
to call constructors, and when the binary is subsequently un-
mapped from memory.

4.5.2 Objective-C data in binary

The binaries compiled from Objective-C include sections
identified by the prefix _objc. These sections are integral to
the functioning of the Objective-C runtime, facilitating the
initialization of Objective-C classes and selectors. In sum-
mary, Objective-C runtime performs the initialization of class
objects and selectors when the binary is mapped to memory,
and Objective-C +load methods are called during constructor
invocation.
Objective-C binaries contain class definitions represented as
data. These classes are defined using two special pointers: isa
and superclass. The isa represents the metaclass, while the
superclass represents the parent class. Each class has its
own metaclass, and the superclass pointer points to the
class data of the parent class. It is important to note that the
superclass pointer can never be null because all classes in
Objective-C must inherit from NSObject.

4.5.3 Restoration logic with Objective-C

Dynamic symbols in Objective-C, which include classes refer-
encing other classes in different libraries, are also considered
as dynamic symbols. Our obfuscation technique successfully
eliminates these symbols. However, the Objective-C runtime
workflow necessitates the loading of these classes. Further-
more, the Foundation library must be initialized before it can
be referenced. The current restoration logic is implemented
prior to any Objective-C runtime and Foundation initializa-
tion, which would lead to crashes. To address this issue, we
incorporate a shellcode snippet to redirect the execution of
the main function until all Objective-C classes have been
resolved.
In order to achieve this, we prevent the Objective-C runtime
from executing its class loading mechanism by modifying the
names of two sections in the binary: __objc_classlist and
__objc_nlclslist. We insert a shellcode before the start of
the _TEXT segment and edit the LC_MAIN load command to
points to the shellcode location.
The shellcode is created to be compact, with the primary
objective of executing a function that resolves all Objective-C
classes, referred to as restore_objc, and jumps to the main
function after it finishes.
Objective-C logic for processing the class data
is done through private methods like readClass,

5

realizeClassWithoutSwift, remapClass, to name a
few. These symbols cannot be found in the export trie.
However, they are available in the LC_SYMTAB directives. We
can search for these symbols addresses and rebuild the logic
as described in _read_images protocol of the Objective-C
runtime.

In iOS environment, these symbols are not declared in
LC_SYMTAB. However, we can try to locate these symbols
indirectly through public symbols that invoke them.

The process of locating the restore_objc procedure can be
complex. To keep the shellcode as compact as possible, we
have opted to store the procedure’s address in a location that
can be easily calculated. Specifically, we have chosen the end
of the _DATA segment for this purpose. At this location, the
first pointer value immediately following the end of the seg-
ment represents the address of the restore_objc procedure,
while the second pointer value indicates the address of the
binary’s main function. These pointer values are written after
the restoration logic.
In practical situations, the space available for the shellcode be-
fore the _TEXT segment and the number of pointer values after
the _DATA segment may be limited. Therefore, it is important
to keep the shellcode as concise as possible and reduce the
number of required pointer values. Generally, there should be
enough space available since these segments are page-aligned,
unless the code and data sizes are exact multiples of the page
size, which would result in no extra space. If the available
space is insufficient, it is recommended to use [?] or similar
methods to add additional code in the binary for the purpose
of restoration logic.

5 Hooking

Hooking is a prominent topic in the field of security and has
evolved with tools such as Frida [15] and Fishhook [5]. Frida
allows developers to inject hooks at arbitrary addresses, Fish-
hook allows developers to replace the body of a function at
runtime after some setup procedures. However, the hooking
method we have described here is distinct from Frida’s ap-
proach, rather it is quite similar to Fishhook but on a binary
level. Although we do not have the flexibility to hook arbi-
trary addresses, our method enables us to modify function
invocations, directing them to our custom functions through
dynamic symbol resolution. This approach is particularly valu-
able when we need to intercept and modify system API calls,
such as file opening (e.g., fopen), or when we want to disable
certain functions from being called altogether.

5.1 C API hooking

As explained in Section 4, our obfuscation technique resolves
dynamic symbols at runtime. This provides an opportunity

to intercept the C API. The concept is straightforward: The
symbol that needs to be intercepted is manually resolved, and
the function pointer is then overwritten by our intercepted
function.
The concept is comparable to Fishhook and dyld
interposing, as it involves altering the API function pointer
to a different function. However, unlike Fishhook, we do not
need to have access to the program’s source code. Addition-
ally, unlike dyld interposing, we manually install the hook
without relying on the dyld API.

5.2 Objective-C class method hooking

As stated earlier in Subsection 4.5.2, the metadata for each
class is stored statically in the binary. This metadata contains
references to the metaclass, parent class, and a structured
called class_ro. When loading the class, the Objective-C
runtime reads this structured to initialize the class prototype.
The prototype includes references to the class name, method
list, property list, ivars, and other information.
The list of methods, called the method list, includes metadata
for each method. Each metadata entry includes a selector,
type, and implementation (which is a function pointer to the
method). The Objective-C runtime goes through the list of
methods and associates each selector with its corresponding
implementation function pointer. This association is used
when invoking a class method using objc_msgSend, which is
the underlying mechanism for invoking Objective-C methods
such as [instance method].
A possible approach to enable hooking Objective-C class
methods is to modify the function pointer in a straightforward
manner. This allows the Objective-C runtime to associate a
different function with it. However, there is a challenge due
to the fact that these method pointers are typically stored in
the _TEXT segment, namely the __objc_methlist section,
which is usually designated for read and execute operations
only. To make this section writable, the max-protection prop-
erty for the section must have the write bit set to 1. During
runtime, the memory is first changed to read-write to allow
modifications, and once all the necessary changes have been
made, the memory is switched back to read-execute to enable
execution. It is important to note that this approach may work
on unverified applications, such as those distributed outside
the App Store. However, it is uncertain whether the App Store
policies prevent the _TEXT section from being writable. There-
fore, instead of directly modifying the function pointer, an
alternative approach is to modify the class_ro data to point
to a different method list.
The above explanation is applicable only to classes that are
defined within the binary. This is why the class_ro data is in-
cluded. However, for classes that are imported, the class_ro
data is not available and modifying the method list is not pos-
sible. Nonetheless, imported classes are defined as dynamic
symbols, and due to the way the Objective-C runtime handles

6

class prototypes, hooking the methods of imported classes
can be achieved through inheritance.
Objective-C is built upon the C API, and its syntax is trans-
formed into calls to the C API. When creating an instance
of a class, the underlying C API used is objc_alloc(Class
cls). This API requires the class metadata as an argument. In
the case of imported classes, the class metadata is represented
by a dynamic symbol. To implement hooking, a different
class metadata is provided, which has a superclass pointer
pointing to the original class metadata. This hooking class
metadata also includes a method list that can potentially over-
ride the original class methods.
In Objective-C, class methods have a strict definition for their
arguments. The first argument is always the class instance
pointer, followed by the selector pointer. Any additional argu-
ments, as pointers, are passed in when the method is invoked.

References

[1] Apple. dyld.

[2] Apple. LibSystem.

[3] Apple. Objective-C Runtime.

[4] Kamil Borzym. MachObfuscator.

[5] Facebook. fishhook.

[6] Vector 35 Inc. Binary Ninja.

[7] iPhoneDev. dyld shared cache.

[8] Yuhei Kawakoya, Eitaro Shioji, Yuto Otsuki, Makoto
Iwamura, and Takeshi Yada. Stealth loader: Trace-free
program loading for api obfuscation. In Research in At-
tacks, Intrusions, and Defenses: 20th International Sym-
posium, RAID 2017, Atlanta, GA, USA, September 18–
20, 2017, Proceedings, pages 217–237. Springer, 2017.

[9] Byoungyoung Lee, Yuna Kim, and Jong Kim. binob+ a
framework for potent and stealthy binary obfuscation. In
Proceedings of the 5th ACM Symposium on Information,
Computer and Communications Security, pages 271–
281, 2010.

[10] Cullen Linn and Saumya Debray. Obfuscation of exe-
cutable code to improve resistance to static disassem-
bly. In Proceedings of the 10th ACM conference on
Computer and communications security, pages 290–299,
2003.

[11] Markus FXJ Oberhumer. Upx the ultimate packer for
executables. http://upx. sourceforge. net/, 2004.

[12] Oreans. Themida.

[13] Polidea. ios-class-guard.

[14] Igor V Popov, Saumya K Debray, and Gregory R An-
drews. Binary obfuscation using signals. In USENIX
Security Symposium, pages 275–290, 2007.

[15] Ole André V. Ravnås. Frida.

[16] VMProtect Software. VMProtect.

[17] Romain Thomas. The Poor Man’s Obfuscator, 2022.

A Obfuscate the restoration logic

A.1 Manual dlsym
The loader’s ability to resolve symbols into function addresses
using either LC_DYLD_INFO_ONLY or LC_CHAINED_FIXUPS
is well understood. Essentially, the loader maintains a list of
loaded libraries and utilizes the export trie of each library
to find public symbols based on their names. However, it is
important to note that in some cases, a function may be re-
exported from another library. In such situations, a recursive
search through libraries is necessary to locate the address of
the function. This recursive search ensures that the loader can
accurately resolve symbols even when they are re-exported
from different libraries. Occasionally, the re-exported symbol
may also be renamed, requiring subsequent searches to use
the new name.
When searching for symbols, it is crucial to consider that sym-
bols may refer to their hosting library using relative paths.
These relative paths can be expressed as either directory-
relative paths or through path variables such as @rpath,
@executable_path, or @loader_path. To ensure precise
resolution of these relative paths, it is recommended to con-
vert them into their respective full paths.
In order to obtain the list of loaded libraries in memory, a
series of three symbols can be used: _dyld_image_count,
_dyld_get_image_header, and _dyld_get_image_name.
By invoking these symbols sequentially, a comprehen-
sive list of loaded libraries can be compiled. This func-
tionality is demonstrated in Listing 3. More specifically,
_dyld_get_image_header provides the base address of the
library at a specific index, while _dyld_get_image_name
returns the full path of the library.

It should be noted that the file path obtained from
_dyld_get_image_name and the library name specified
in the ID_DYLIB load command may not match. dyld ex-
amines the LC_DYLIB load commands to determine which
library to load based on the ID_DYLIB value.

A.2 Obfuscate the external library
Our obfuscation method can also be applied to the external
library, which is a Mach-O binary. During the obfuscation

7

process, all symbols are removed and need to be reinstated
during runtime. As the library is known to be executed first,
we can utilize this opportunity to resolve our library. However,
a drawback of this approach is the restricted usage of dynamic
symbols.
In order to address the issue of restricted usage of dynamic
symbols and ensure the restoration of the external library,
a possible solution is to employ a solitary dynamic symbol
as a point of reference. This dynamic symbol can then be
utilized to locate the header of the dynamic library. Following
this rationale, we can locate the header of the dyld library
by selecting any dynamic symbol of our preference, such as
dyld_get_sdk_version.
During the extraction phase, all symbols except for
dyld_get_sdk_version are removed. This specific symbol
is used to locate the dyld library in memory. The extracted
information is then written into a new section of the library
called _EXTRACTED for easy access. By obtaining a reference
to dyld, we can restore the function pointers of dynamic
symbols using the information stored in _EXTRACTED. It is
necessary to use many symbols in dyld, but these symbols
can be found by traversing the export trie of dyld in memory.
By executing the aforementioned procedures, both the obfus-
cation binary and the restoration library become completely
obfuscated. The obfuscated versions of these components
reveal very few symbols, and in the case of an Objective-C
compiled binary, references to classes are also eliminated.

8

B Code snippets

foo@address:
0x00000000

foo@stub:
mov x8, [foo@address]
blx x8

main:
call foo@stub

(a)

foo@address:
0xAABBCCDD

foo@stub:
mov x8, [foo@address]
blx x8

main:
call foo@stub

(b)

Table 1: Assembly stubs: (a) Stub before dynamic symbol resolution and, (b) Stub after dynamic symbol resolution. foo@address
in (a) is uninitialized, while in (b) it is given a concrete address.

dyld_stub_binder:
0x11223344

foo@stub_helper:
mov x12, foo_bytecode_offset
mov x8, [dyld_stub_binder]
blx x8

foo@address:
foo@stub_helper

foo@stub:
mov x8, [foo@address]
blx x8

main:
call foo@stub

(a)

dyld_stub_binder:
0x11223344

foo@stub_helper:
mov x12, foo_bytecode_offset
mov x8, [dyld_stub_binder]
blx x8

foo@address:
0xAABBCCDD

foo@stub:
mov x8, [foo@address]
blx x8

main:
call foo@stub

(b)

Table 2: Lazy dynamic symbols resolution: (a) Stub before lazy dynamic symbol resolution and, (b) Stub after lazy dy-
namic symbol resolution. foo@address in (a) is initialized with a stub_helper while in (b) it is given a concrete address.
foo_bytecode_offset is template for the offset of foo symbol in the lazy bytecode chain.

9

adr x8, 0
movz x9, #0x9999
add x8, x8, x9
stp x30, x8, [sp], #-0x10
stp x3, x2, [sp], #-0x10
stp x1, x0, [sp], #-0x10
ldr x9, [x8]
blr x9
ldp x1, x0, [sp, #0x10]!
ldp x3, x2, [sp, #0x10]!
ldp x30, x8, [sp, #0x10]!
ldr x9, [x8, #8]
br x9

lea r8,[rip+0x0]
mov r9,0x4030201
add r8,r9
push rdi
push rsi
push rdx
push rcx
push r8
mov r9,QWORD PTR [r8]
call r9
pop r8
pop rcx
pop rdx
pop rsi
pop rdi
mov r9,QWORD PTR [r8+0x8]
jmp r9

Table 3: Shellcode inserted: ARM64 on the left; Intel 64 on the right. The second instruction of both versions is the offset from
the shellcode to the end of __DATA section. Making the pop on 2 words value of r8 (in Intel 64) or x8 (in ARM64) be the address
of the restore_objc and the main function.

struct ProgramVars {
void *mh; // mach_header or mach_header64
int *NXArgcPtr;
const char ***NXArgvPtr;
const char ***environPtr;
const char **__prognamePtr;

};

__attribute__((constructor)) static void
restoration(int argc, const char *const argv[], const char *const envp[],

const char *const apple[], const struct ProgramVars *vars) {
const void* main_binary_base = vars->mh;
// ...

}

Listing 2: Using ProgramVars struct

#import <mach-o/dyld.h>
uint32_t count = _dyld_image_count();
for(uint32_t i = 0; i < count; i++) {

const char *name = _dyld_get_image_name(i);
const void *header = _dyld_get_image_header(i);

}

Listing 3: Get a list of loaded libraries

10

const uint32_t magic64 = 0xfeedfacf;
const uint32_t magic32 = 0xfeedface;

void *find_header(void *_func) {
const uint64_t page_size = 0x1000;
uint64_t func = (uint64_t)_func;
uint64_t start_searching = func + (0x1000 - (func % page_size));
uint32_t *x = (uint32_t *)(start_searching);
while (*x != magic64 && *x != magic32) {

x -= 0x1000 / 4;
}
return (void *)x;

}

Listing 4: Searching for Mach-O base address

11

	Introduction
	Background
	Binary Obfuscation
	Apple's loader dyld
	Mach-O binary format
	Basic Mach-O structure
	Dynamic library load chain
	Dynamic Symbols
	Rebase
	Bytecode chain
	Chained fixups
	Export trie
	Fat binary

	Related Works
	Implementation
	Design Overview
	Extracting information
	Removing redundant information
	Restoration
	Objective-C compiled binary
	Relationship with dyld
	Objective-C data in binary
	Restoration logic with Objective-C

	Hooking
	C API hooking
	Objective-C class method hooking

	Obfuscate the restoration logic
	Manual dlsym
	Obfuscate the external library

	Code snippets

