18 KiB
5.3 angr 二进制自动化分析
angr 是一个多架构的二进制分析平台,具备对二进制文件的动态符号执行能力和多种静态分析能力。在近几年的 CTF 中也大有用途。
安装
在 Ubuntu 上,首先我们应该安装所有的编译所需要的依赖环境:
$ sudo apt install python-dev libffi-dev build-essential virtualenvwrapper
强烈建议在虚拟环境中安装 angr,因为有几个 angr 的依赖(比如z3)是从他们的原始库中 fork 而来,如果你已经安装了 z3,那么你肯定不希望 angr 的依赖覆盖掉官方的共享库。
对于大多数 *nix系统,只需要 mkvirtualenv angr && pip install angr
安装就好了。
如果这样安装失败的话,那么你可以按照下面的顺序从 angr 的官方仓库安装:
1. claripy
2. archinfo
3. pyvex
4. cle
5. angr
如:
$ git clone https://github.com/angr/claripy
$ cd claripy
$ sudo pip install -r requirements.txt
$ sudo python setup.py build
$ sudo python setup.py install
其他几个库也是一样的。
安装过程中可能会有一些奇怪的错误,可以到官方文档中查看。
使用 angr
入门
使用 angr 的第一步是新建一个工程,几乎所有的操作都是围绕这个工程展开的:
>>> import angr
>>> proj = angr.Project('/bin/true')
WARNING | 2017-12-08 10:46:58,836 | cle.loader | The main binary is a position-independent executable. It is being loaded with a base address of 0x400000.
这样就得到了二进制文件的各种信息,如:
>>> proj.filename
'/bin/true'
>>> proj.arch
<Arch AMD64 (LE)>
>>> hex(proj.entry)
'0x4013b0'
程序加载时会将二进制文件和共享库映射到虚拟地址中,CLE 模块就是用来处理这些东西的。
>>> proj.loader
<Loaded true, maps [0x400000:0x5008000]>
所有对象文件如下,其中二进制文件是 main object:
>>> proj.loader.all_objects
[<ELF Object true, maps [0x400000:0x60721f]>, <ELF Object libc-2.26.so, maps [0x1000000:0x13b78cf]>, <ELF Object ld-2.26.so, maps [0x2000000:0x22260f7]>, <ELFTLSObject Object cle##tls, maps [0x3000000:0x300d010]>, <ExternObject Object cle##externs, maps [0x4000000:0x4008000]>, <KernelObject Object cle##kernel, maps [0x5000000:0x5008000]>]
>>> proj.loader.main_object
<ELF Object true, maps [0x400000:0x60721f]>
>>> proj.loader.main_object.pic
True
通常我们在创建工程时选择关闭 auto_load_libs
以避免 angr 加载共享库:
>>> p = angr.Project('/bin/true', auto_load_libs=False)
WARNING | 2017-12-08 11:09:28,629 | cle.loader | The main binary is a position-independent executable. It is being loaded with a base address of 0x400000.
>>> p.loader.all_objects
[<ELF Object true, maps [0x400000:0x60721f]>, <ExternObject Object cle##externs, maps [0x1000000:0x1008000]>, <KernelObject Object cle##kernel, maps [0x2000000:0x2008000]>, <ELFTLSObject Object cle##tls, maps [0x3000000:0x300d010]>]
project.factory
提供了很多类对二进制文件进行分析,它提供了几个方便的构造函数。
project.factory.block()
用于从给定地址解析一个 basic block:
>>> block = proj.factory.block(proj.entry) # 从程序头开始解析一个 basic block
>>> block
<Block for 0x4013b0, 42 bytes>
>>> block.pp() # pretty-print,即打印出反汇编代码
0x4013b0: xor ebp, ebp
0x4013b2: mov r9, rdx
0x4013b5: pop rsi
0x4013b6: mov rdx, rsp
0x4013b9: and rsp, 0xfffffffffffffff0
0x4013bd: push rax
0x4013be: push rsp
0x4013bf: lea r8, qword ptr [rip + 0x32ca]
0x4013c6: lea rcx, qword ptr [rip + 0x3253]
0x4013cd: lea rdi, qword ptr [rip - 0xe4]
0x4013d4: call qword ptr [rip + 0x205b26]
>>> block.instructions # 指令数量
11
>>> block.instruction_addrs # 指令地址
[4199344L, 4199346L, 4199349L, 4199350L, 4199353L, 4199357L, 4199358L, 4199359L, 4199366L, 4199373L, 4199380L]
另外,还可以将 block 对象转换成其他形式:
>>> block.capstone
<CapstoneBlock for 0x4013b0>
>>> block.capstone.pp()
>>>
>>> block.vex
<pyvex.block.IRSB object at 0x7fe526b98670>
>>> block.vex.pp()
程序的执行需要初始化一个 SimState
对象:
>>> state = proj.factory.entry_state()
>>> state
<SimState @ 0x4013b0>
该对象包含了程序的内存、寄存器、文件系统数据等:
>>> state.regs.rip
<BV64 0x4013b0>
>>> state.regs.rsp
<BV64 0x7fffffffffeff98>
>>> state.regs.rdi
<BV64 reg_48_0_64{UNINITIALIZED}> # 符号变量,它是符号执行的基础
>>> state.mem[proj.entry].int.resolved
<BV32 0x8949ed31>
这里的 BV,即 bitvectors,用于表示 angr 里的 CPU 数据。下面是 python int 和 bitvectors 之间的转换:
>>> bv = state.solver.BVV(0x1234, 32)
>>> bv
<BV32 0x1234>
>>> hex(state.solver.eval(bv))
'0x1234'
>>> bv = state.solver.BVV(0x1234, 64)
>>> bv
<BV64 0x1234>
>>> hex(state.solver.eval(bv))
'0x1234L'
使用 bitvectors 来设置寄存器和内存的值,当直接传入 python int 时,angr 会自动将其转换成 bitvectors:
>>> state.regs.rsi = state.solver.BVV(3, 64)
>>> state.regs.rsi
<BV64 0x3>
>>> state.mem[0x1000].long = 4
>>> state.mem[0x1000].long.resolved # .resolved 获取 bitvectors
<BV64 0x4>
>>> state.mem[0x1000].long.concrete # .concrete 获得 python int
4L
初始化的 state 可以经过模拟执行得到一系列的 states,simulation 管理器的作用就是对这些 states 进行管理:
>>> simgr = proj.factory.simulation_manager(state)
>>> simgr
<SimulationManager with 1 active>
>>> simgr.active
[<SimState @ 0x4013b0>]
>>> simgr.step() # 模拟一个 basic block 的执行
<SimulationManager with 1 active>
>>> simgr.active # 模拟状态被更新
[<SimState @ 0x1020e80>]
>>> simgr.active[0].regs.rip # active[0] 是当前 state
<BV64 0x404620>
>>> state.regs.rip # 但原始的 state 没有变
<BV64 0x4013b0>
project.analyses
提供了大量函数用于程序分析。
>>> cfg = p.analyses.CFGFast() # 得到 control-flow graph
>>> cfg
<CFGFast Analysis Result at 0x7f4626f15090>
>>> cfg.graph
<networkx.classes.digraph.DiGraph object at 0x7f462316ef90> # 详细内容请查看 networkx
>>> len(cfg.graph.nodes())
937
>>> entry_node = cfg.get_any_node(proj.entry) # 得到给定地址的节点
>>> entry_node
<CFGNode 0x4013b0[42]>
>>> len(list(cfg.graph.successors(entry_node)))
2
如果要想画出图来,还需要安装 matplotlib,Tkinter 等。
>>> import networkx as nx
>>> import matplotlib.pyplot as plt
>>> nx.draw(cfg.graph) # 画图
>>> plt.show() # 显示
>>> plt.savefig('temp.png') # 保存
加载二进制文件
angr 的二进制加载模块称为 CLE。主类为 cle.loader.Loader
,它导入所有的对象文件并导出一个进程内存的抽象。类 cle.backends
是加载器的后端,根据二进制文件类型区分为 cle.backends.elf
、cle.backends.pe
、cle.backends.macho
等。
加载对象文件和细分类型如下:
>>> proj.loader.all_objects # 所有对象文件
[<ELF Object true, maps [0x400000:0x60721f]>, <ELF Object libc-2.26.so, maps [0x1000000:0x13b78cf]>, <ELF Object ld-2.26.so, maps [0x2000000:0x22260f7]>, <ELFTLSObject Object cle##tls, maps [0x3000000:0x300d010]>, <ExternObject Object cle##externs, maps [0x4000000:0x4008000]>, <KernelObject Object cle##kernel, maps [0x5000000:0x5008000]>]
proj.loader.main_object
:主对象文件proj.loader.shared_objects
:共享对象文件proj.loader.extern_object
:外部对象文件proj.loader.all_elf_object
:所有 elf 对象文件proj.loader.kernel_object
:内核对象文件
通过对这些对象文件进行操作,可以解析出相关信息:
>>> obj = proj.loader.main_object
>>> hex(obj.entry) # 入口地址
'0x4013b0'
>>> hex(obj.min_addr), hex(obj.max_addr) # 起始地址和结束地址
('0x400000', '0x60721f')
>>> obj.segments # segments
<Regions: [<ELFSegment offset=0x0, flags=0x5, filesize=0x6094, vaddr=0x400000, memsize=0x6094>, <ELFSegment offset=0x6c10, flags=0x6, filesize=0x470, vaddr=0x606c10, memsize=0x610>]>
>>> obj.sections # sections
<Regions: [<Unnamed | offset 0x0, vaddr 0x400000, size 0x0>, <.interp | offset 0x238, vaddr 0x400238, size 0x1c>, <.note.ABI-tag | offset 0x254, vaddr 0x400254, size 0x20>,...etc
根据需要解析我们需要的信息:
>>> obj.find_segment_containing(obj.entry) # 包含给定地址的 segments
<ELFSegment offset=0x0, flags=0x5, filesize=0x6094, vaddr=0x400000, memsize=0x6094>
>>> obj.find_section_containing(obj.entry) # 包含给定地址的 sections
<.text | offset 0x12f0, vaddr 0x4012f0, size 0x33c9>
angr 在 CTF 中的运用
re DefcampCTF2015 entry_language
这是一题标准的密码验证题,输入一个字符串,程序验证对误。
$ file entry_language
defcamp_r100: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked, interpreter /lib64/ld-linux-x86-64.so.2, for GNU/Linux 2.6.24, BuildID[sha1]=0f464824cc8ee321ef9a80a799c70b1b6aec8168, stripped
$ ./entry_language
Enter the password: ABCD
Incorrect password!
为了与 angr 的自动化做对比,我们先使用传统的方法,逆向算法求解,main
函数和验证函数 fcn.004006fd
如下:
[0x00400610]> pdf @ main
/ (fcn) main 153
| main ();
| ; var int local_110h @ rbp-0x110
| ; var int local_8h @ rbp-0x8
| ; DATA XREF from 0x0040062d (entry0)
| 0x004007e8 55 push rbp
| 0x004007e9 4889e5 mov rbp, rsp
| 0x004007ec 4881ec100100. sub rsp, 0x110
| 0x004007f3 64488b042528. mov rax, qword fs:[0x28] ; [0x28:8]=-1 ; '(' ; 40
| 0x004007fc 488945f8 mov qword [local_8h], rax
| 0x00400800 31c0 xor eax, eax
| 0x00400802 bf37094000 mov edi, str.Enter_the_password: ; 0x400937 ; "Enter the password: "
| 0x00400807 b800000000 mov eax, 0
| 0x0040080c e8affdffff call sym.imp.printf ; int printf(const char *format)
| 0x00400811 488b15500820. mov rdx, qword [obj.stdin] ; [0x601068:8]=0
| 0x00400818 488d85f0feff. lea rax, [local_110h]
| 0x0040081f beff000000 mov esi, 0xff ; 255
| 0x00400824 4889c7 mov rdi, rax
| 0x00400827 e8b4fdffff call sym.imp.fgets ; char *fgets(char *s, int size, FILE *stream)
| 0x0040082c 4885c0 test rax, rax
| ,=< 0x0040082f 7435 je 0x400866
| | 0x00400831 488d85f0feff. lea rax, [local_110h]
| | 0x00400838 4889c7 mov rdi, rax
| | 0x0040083b e8bdfeffff call fcn.004006fd ; 调用验证函数
| | 0x00400840 85c0 test eax, eax
| ,==< 0x00400842 7511 jne 0x400855
| || 0x00400844 bf4c094000 mov edi, str.Nice_ ; 0x40094c ; "Nice!"
| || 0x00400849 e852fdffff call sym.imp.puts ; int puts(const char *s)
| || 0x0040084e b800000000 mov eax, 0
| ,===< 0x00400853 eb16 jmp 0x40086b
| ||| ; JMP XREF from 0x00400842 (main)
| |`--> 0x00400855 bf52094000 mov edi, str.Incorrect_password_ ; 0x400952 ; "Incorrect password!"
| | | 0x0040085a e841fdffff call sym.imp.puts ; int puts(const char *s)
| | | 0x0040085f b801000000 mov eax, 1
| |,==< 0x00400864 eb05 jmp 0x40086b
| ||| ; JMP XREF from 0x0040082f (main)
| ||`-> 0x00400866 b800000000 mov eax, 0
| || ; JMP XREF from 0x00400864 (main)
| || ; JMP XREF from 0x00400853 (main)
| ``--> 0x0040086b 488b4df8 mov rcx, qword [local_8h]
| 0x0040086f 6448330c2528. xor rcx, qword fs:[0x28]
| ,=< 0x00400878 7405 je 0x40087f
| | 0x0040087a e831fdffff call sym.imp.__stack_chk_fail ; void __stack_chk_fail(void)
| | ; JMP XREF from 0x00400878 (main)
| `-> 0x0040087f c9 leave
\ 0x00400880 c3 ret
[0x00400610]> pdf @ fcn.004006fd
/ (fcn) fcn.004006fd 171
| fcn.004006fd (int arg_bh);
| ; var int local_38h @ rbp-0x38
| ; var int local_24h @ rbp-0x24
| ; var int local_20h @ rbp-0x20
| ; var int local_18h @ rbp-0x18
| ; var int local_10h @ rbp-0x10
| ; arg int arg_bh @ rbp+0xb
| ; CALL XREF from 0x0040083b (main)
| 0x004006fd 55 push rbp
| 0x004006fe 4889e5 mov rbp, rsp
| 0x00400701 48897dc8 mov qword [local_38h], rdi
| 0x00400705 c745dc000000. mov dword [local_24h], 0
| 0x0040070c 48c745e01409. mov qword [local_20h], str.Dufhbmf ; 0x400914 ; "Dufhbmf"
| 0x00400714 48c745e81c09. mov qword [local_18h], str.pG_imos ; 0x40091c ; "pG`imos"
| 0x0040071c 48c745f02409. mov qword [local_10h], str.ewUglpt ; 0x400924 ; "ewUglpt"
| 0x00400724 c745dc000000. mov dword [local_24h], 0
| ,=< 0x0040072b eb6e jmp 0x40079b
| | ; JMP XREF from 0x0040079f (fcn.004006fd)
| .--> 0x0040072d 8b4ddc mov ecx, dword [local_24h]
| :| 0x00400730 ba56555555 mov edx, 0x55555556
| :| 0x00400735 89c8 mov eax, ecx
| :| 0x00400737 f7ea imul edx
| :| 0x00400739 89c8 mov eax, ecx
| :| 0x0040073b c1f81f sar eax, 0x1f
| :| 0x0040073e 29c2 sub edx, eax
| :| 0x00400740 89d0 mov eax, edx
| :| 0x00400742 01c0 add eax, eax
| :| 0x00400744 01d0 add eax, edx
| :| 0x00400746 29c1 sub ecx, eax
| :| 0x00400748 89ca mov edx, ecx
| :| 0x0040074a 4863c2 movsxd rax, edx
| :| 0x0040074d 488b74c5e0 mov rsi, qword [rbp + rax*8 - 0x20]
| :| 0x00400752 8b4ddc mov ecx, dword [local_24h]
| :| 0x00400755 ba56555555 mov edx, 0x55555556
| :| 0x0040075a 89c8 mov eax, ecx
| :| 0x0040075c f7ea imul edx
| :| 0x0040075e 89c8 mov eax, ecx
| :| 0x00400760 c1f81f sar eax, 0x1f
| :| 0x00400763 29c2 sub edx, eax
| :| 0x00400765 89d0 mov eax, edx
| :| 0x00400767 01c0 add eax, eax
| :| 0x00400769 4898 cdqe
| :| 0x0040076b 4801f0 add rax, rsi ; '+'
| :| 0x0040076e 0fb600 movzx eax, byte [rax]
| :| 0x00400771 0fbed0 movsx edx, al
| :| 0x00400774 8b45dc mov eax, dword [local_24h]
| :| 0x00400777 4863c8 movsxd rcx, eax
| :| 0x0040077a 488b45c8 mov rax, qword [local_38h]
| :| 0x0040077e 4801c8 add rax, rcx ; '&'
| :| 0x00400781 0fb600 movzx eax, byte [rax]
| :| 0x00400784 0fbec0 movsx eax, al
| :| 0x00400787 29c2 sub edx, eax
| :| 0x00400789 89d0 mov eax, edx
| :| 0x0040078b 83f801 cmp eax, 1 ; 1
| ,===< 0x0040078e 7407 je 0x400797 ; = 1 时跳转,验证成功
| |:| 0x00400790 b801000000 mov eax, 1 ; 返回 1,验证失败
| ,====< 0x00400795 eb0f jmp 0x4007a6
| ||:| ; JMP XREF from 0x0040078e (fcn.004006fd)
| |`---> 0x00400797 8345dc01 add dword [local_24h], 1 ; i = i + 1
| | :| ; JMP XREF from 0x0040072b (fcn.004006fd)
| | :`-> 0x0040079b 837ddc0b cmp dword [local_24h], 0xb ; [0xb:4]=-1 ; 11
| | `==< 0x0040079f 7e8c jle 0x40072d ; i <= 11 时跳转
| | 0x004007a1 b800000000 mov eax, 0 ; 返回 0
| | ; JMP XREF from 0x00400795 (fcn.004006fd)
| `----> 0x004007a6 5d pop rbp
\ 0x004007a7 c3 ret
整理后可以得到下面的伪代码:
int fcn_004006fd(int *passwd) {
char *str_1 = "Dufhbmf";
char *str_2 = "pG`imos";
char *str_3 = "ewUglpt";
for (int i = 0; i <= 11; i++) {
if((&str_3)[i % 3][2 * (1 / 3)] - *(i + passwd) != 1) {
return 1;
}
}
return 0;
}
然后写出逆向脚本:
str_list = ["Dufhbmf", "pG`imos", "ewUglpt"]
passwd = []
for i in range(12):
passwd.append(chr(ord(str_list[i % 3][2 * (i / 3)]) - 1))
print ''.join(passwd)
逆向算法似乎也很简单,但如果连算法都不用逆的话,下面就是见证 angr 魔力的时刻,我们只需要指定让程序运行到 0x400844
,即验证通过时的位置,而不用管验证的逻辑是怎么样的。完整的 exp 如下,其他文件在 github 相应文件夹中。
import angr
project = angr.Project("entry_language", auto_load_libs=False)
@project.hook(0x400844)
def print_flag(state):
print "FLAG SHOULD BE:", state.posix.dump_fd(0)
project.terminate_execution()
project.execute()
Bingo!!!
$ python2 exp_angr.py
FLAG SHOULD BE: Code_Talkers
$ ./entry_language
Enter the password: Code_Talkers
Nice!